{"title":"氢和金属氢化物能源技术:商业化现状和问题","authors":"B. P. Tarasov, M. V. Lototsky","doi":"10.1134/s0018143923080222","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The need for the transition to carbon-free energy and the introduction of hydrogen energy technologies as its key element is substantiated. The main issues related to hydrogen energy materials and systems, including technologies for the production, storage, transportation, and use of hydrogen are considered. The application areas of metal hydrides as promising materials for hydrogen energy technologies are presented. Prospects for the commercialization of hydrogen and metal hydride technologies are discussed, including those using cheap hydride-forming materials based on titanium–iron alloys.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"155 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen and Metal Hydride Energy Technologies: Current State and Problems of Commercialization\",\"authors\":\"B. P. Tarasov, M. V. Lototsky\",\"doi\":\"10.1134/s0018143923080222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The need for the transition to carbon-free energy and the introduction of hydrogen energy technologies as its key element is substantiated. The main issues related to hydrogen energy materials and systems, including technologies for the production, storage, transportation, and use of hydrogen are considered. The application areas of metal hydrides as promising materials for hydrogen energy technologies are presented. Prospects for the commercialization of hydrogen and metal hydride technologies are discussed, including those using cheap hydride-forming materials based on titanium–iron alloys.</p>\",\"PeriodicalId\":12893,\"journal\":{\"name\":\"High Energy Chemistry\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018143923080222\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143923080222","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hydrogen and Metal Hydride Energy Technologies: Current State and Problems of Commercialization
Abstract
The need for the transition to carbon-free energy and the introduction of hydrogen energy technologies as its key element is substantiated. The main issues related to hydrogen energy materials and systems, including technologies for the production, storage, transportation, and use of hydrogen are considered. The application areas of metal hydrides as promising materials for hydrogen energy technologies are presented. Prospects for the commercialization of hydrogen and metal hydride technologies are discussed, including those using cheap hydride-forming materials based on titanium–iron alloys.
期刊介绍:
High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.