氢和金属氢化物能源技术:商业化现状和问题

IF 0.9 4区 化学 Q4 CHEMISTRY, PHYSICAL
B. P. Tarasov, M. V. Lototsky
{"title":"氢和金属氢化物能源技术:商业化现状和问题","authors":"B. P. Tarasov, M. V. Lototsky","doi":"10.1134/s0018143923080222","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The need for the transition to carbon-free energy and the introduction of hydrogen energy technologies as its key element is substantiated. The main issues related to hydrogen energy materials and systems, including technologies for the production, storage, transportation, and use of hydrogen are considered. The application areas of metal hydrides as promising materials for hydrogen energy technologies are presented. Prospects for the commercialization of hydrogen and metal hydride technologies are discussed, including those using cheap hydride-forming materials based on titanium–iron alloys.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"155 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen and Metal Hydride Energy Technologies: Current State and Problems of Commercialization\",\"authors\":\"B. P. Tarasov, M. V. Lototsky\",\"doi\":\"10.1134/s0018143923080222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The need for the transition to carbon-free energy and the introduction of hydrogen energy technologies as its key element is substantiated. The main issues related to hydrogen energy materials and systems, including technologies for the production, storage, transportation, and use of hydrogen are considered. The application areas of metal hydrides as promising materials for hydrogen energy technologies are presented. Prospects for the commercialization of hydrogen and metal hydride technologies are discussed, including those using cheap hydride-forming materials based on titanium–iron alloys.</p>\",\"PeriodicalId\":12893,\"journal\":{\"name\":\"High Energy Chemistry\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018143923080222\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143923080222","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 向无碳能源过渡的必要性以及将氢能源技术作为其关键要素的引入得到了证实。文章探讨了与氢能材料和系统有关的主要问题,包括氢的生产、储存、运输和使用技术。介绍了金属氢化物作为有前途的氢能技术材料的应用领域。讨论了氢和金属氢化物技术的商业化前景,包括使用基于钛铁合金的廉价氢化物形成材料的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogen and Metal Hydride Energy Technologies: Current State and Problems of Commercialization

Hydrogen and Metal Hydride Energy Technologies: Current State and Problems of Commercialization

Abstract

The need for the transition to carbon-free energy and the introduction of hydrogen energy technologies as its key element is substantiated. The main issues related to hydrogen energy materials and systems, including technologies for the production, storage, transportation, and use of hydrogen are considered. The application areas of metal hydrides as promising materials for hydrogen energy technologies are presented. Prospects for the commercialization of hydrogen and metal hydride technologies are discussed, including those using cheap hydride-forming materials based on titanium–iron alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Energy Chemistry
High Energy Chemistry 化学-物理化学
CiteScore
1.50
自引率
28.60%
发文量
62
审稿时长
6-12 weeks
期刊介绍: High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信