flDPnn2:准确而快速的蛋白质内在紊乱预测器

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"flDPnn2:准确而快速的蛋白质内在紊乱预测器","authors":"","doi":"10.1016/j.jmb.2024.168605","DOIUrl":null,"url":null,"abstract":"<div><p>Prediction of the intrinsic disorder in protein sequences is an active research area, with well over 100 predictors that were released to date. These efforts are motivated by the functional importance and high levels of abundance of intrinsic disorder, combined with relatively low amounts of experimental annotations. The disorder predictors are periodically evaluated by independent assessors in the Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiments. The recently completed CAID2 experiment assessed close to 40 state-of-the-art methods demonstrating that some of them produce accurate results. In particular, flDPnn2 method, which is the successor of flDPnn that performed well in the CAID1 experiment, secured the overall most accurate results on the Disorder-NOX dataset in CAID2. flDPnn2 implements a number of improvements when compared to its predecessor including changes to the inputs, increased size of the deep network model that we retrained on a larger training set, and addition of an alignment module. Using results from CAID2, we show that flDPnn2 produces accurate predictions very quickly, modestly improving over the accuracy of flDPnn and reducing the runtime by half, to about 27 s per protein. flDPnn2 is freely available as a convenient web server at <span><span>http://biomine.cs.vcu.edu/servers/flDPnn2/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168605"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624002006/pdfft?md5=330905e4b9416747921c22b01cd0d82e&pid=1-s2.0-S0022283624002006-main.pdf","citationCount":"0","resultStr":"{\"title\":\"flDPnn2: Accurate and Fast Predictor of Intrinsic Disorder in Proteins\",\"authors\":\"\",\"doi\":\"10.1016/j.jmb.2024.168605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Prediction of the intrinsic disorder in protein sequences is an active research area, with well over 100 predictors that were released to date. These efforts are motivated by the functional importance and high levels of abundance of intrinsic disorder, combined with relatively low amounts of experimental annotations. The disorder predictors are periodically evaluated by independent assessors in the Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiments. The recently completed CAID2 experiment assessed close to 40 state-of-the-art methods demonstrating that some of them produce accurate results. In particular, flDPnn2 method, which is the successor of flDPnn that performed well in the CAID1 experiment, secured the overall most accurate results on the Disorder-NOX dataset in CAID2. flDPnn2 implements a number of improvements when compared to its predecessor including changes to the inputs, increased size of the deep network model that we retrained on a larger training set, and addition of an alignment module. Using results from CAID2, we show that flDPnn2 produces accurate predictions very quickly, modestly improving over the accuracy of flDPnn and reducing the runtime by half, to about 27 s per protein. flDPnn2 is freely available as a convenient web server at <span><span>http://biomine.cs.vcu.edu/servers/flDPnn2/</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"436 17\",\"pages\":\"Article 168605\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022283624002006/pdfft?md5=330905e4b9416747921c22b01cd0d82e&pid=1-s2.0-S0022283624002006-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283624002006\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624002006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质序列的内在无序性预测是一个活跃的研究领域,迄今为止已发布了 100 多个预测器。这些工作的动力来自于内在紊乱的功能重要性和高丰度,以及相对较少的实验注释。在蛋白质内在紊乱预测关键评估(CAID)实验中,独立评估员定期对紊乱预测因子进行评估。最近完成的 CAID2 实验对近 40 种最先进的方法进行了评估,结果表明其中一些方法能得出准确的结果。特别是 flDPnn2 方法,它是在 CAID1 实验中表现出色的 flDPnn 的后继方法,在 CAID2 中的 Disorder-NOX 数据集上获得了总体最准确的结果。与前代方法相比,flDPnn2 实现了一系列改进,包括更改输入、增加深度网络模型的大小(我们在更大的训练集上重新训练了该模型)以及添加配准模块。我们利用 CAID2 的结果表明,flDPnn2 能够非常快速地生成准确的预测结果,比 flDPnn 的准确性略有提高,而且运行时间缩短了一半,每个蛋白质的运行时间约为 27 秒。flDPnn2 作为一个方便的网络服务器免费提供,网址是 http://biomine.cs.vcu.edu/servers/flDPnn2/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

flDPnn2: Accurate and Fast Predictor of Intrinsic Disorder in Proteins

flDPnn2: Accurate and Fast Predictor of Intrinsic Disorder in Proteins

Prediction of the intrinsic disorder in protein sequences is an active research area, with well over 100 predictors that were released to date. These efforts are motivated by the functional importance and high levels of abundance of intrinsic disorder, combined with relatively low amounts of experimental annotations. The disorder predictors are periodically evaluated by independent assessors in the Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiments. The recently completed CAID2 experiment assessed close to 40 state-of-the-art methods demonstrating that some of them produce accurate results. In particular, flDPnn2 method, which is the successor of flDPnn that performed well in the CAID1 experiment, secured the overall most accurate results on the Disorder-NOX dataset in CAID2. flDPnn2 implements a number of improvements when compared to its predecessor including changes to the inputs, increased size of the deep network model that we retrained on a larger training set, and addition of an alignment module. Using results from CAID2, we show that flDPnn2 produces accurate predictions very quickly, modestly improving over the accuracy of flDPnn and reducing the runtime by half, to about 27 s per protein. flDPnn2 is freely available as a convenient web server at http://biomine.cs.vcu.edu/servers/flDPnn2/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信