Marisa Agarwal, Robert W. Lamb, Franz Smith, Jon D. Witman
{"title":"加拉帕戈斯岩礁深度梯度上浅水黑珊瑚的分布与生态学","authors":"Marisa Agarwal, Robert W. Lamb, Franz Smith, Jon D. Witman","doi":"10.1007/s00338-024-02497-6","DOIUrl":null,"url":null,"abstract":"<p><i>Antipathes galapagensis</i> is a prevalent habitat-forming black coral in subtidal ecosystems of the Galápagos Marine Reserve (GMR). Despite their ecological importance and status as a CITES-regulated order, little is known about their depth distribution, population structure and ecology in the GMR. Surveys were conducted in 2021 and 2022 at 9 sites in the central Galápagos Archipelago to investigate how black coral densities, occupancy, size, habitat utilization, and epizoan overgrowth varied between 2.0 and 20.0 m depth. The shallowest black corals occurred at 3.4 m depth, one of the shallowest occurrences of an <i>Antipathes</i> spp. in the world. Coral density increased with depth, with a maximum density of 5.2 colonies per m<sup>2</sup> observed across the depth range surveyed. Occupancy modeling also yielded curves with increasing probabilities of black coral presence with depth at all sites. Colony height increased with depth at 8 out of 9 sites and was positively correlated with coral density at 6 of 9 sites. Overall, 47% of colonies surveyed occupied cryptic habitats and 53% were attached to exposed substrate, but black coral habitat usage patterns varied with depth at 5 of 9 sites. At these sites, colonies on shallower transects (5.0, 10.0 m depth) more frequently displayed cryptic habitat usage while colonies along the deeper transects (15.0, 20.0 m) were more often exposed. In general, coral density, probability of occupancy, height, and exposed habitat utilization increased with depth, while the average degree of overgrowth and number of epibiont taxa were unrelated to depth. Five hypotheses regarding factors potentially limiting the shallow (upper) depth distribution of <i>A. galapagensis</i>—ranging from negative impacts of the physical environment to high predation on exposed substrates—are presented for future testing. These results provide a comprehensive ecological characterization of Galápagos black coral populations that can be used to assess the impact of future environmental change and applied to management decisions for this key marine foundation species in the GMR.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution and ecology of shallow-water black corals across a depth gradient on Galápagos rocky reefs\",\"authors\":\"Marisa Agarwal, Robert W. Lamb, Franz Smith, Jon D. Witman\",\"doi\":\"10.1007/s00338-024-02497-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Antipathes galapagensis</i> is a prevalent habitat-forming black coral in subtidal ecosystems of the Galápagos Marine Reserve (GMR). Despite their ecological importance and status as a CITES-regulated order, little is known about their depth distribution, population structure and ecology in the GMR. Surveys were conducted in 2021 and 2022 at 9 sites in the central Galápagos Archipelago to investigate how black coral densities, occupancy, size, habitat utilization, and epizoan overgrowth varied between 2.0 and 20.0 m depth. The shallowest black corals occurred at 3.4 m depth, one of the shallowest occurrences of an <i>Antipathes</i> spp. in the world. Coral density increased with depth, with a maximum density of 5.2 colonies per m<sup>2</sup> observed across the depth range surveyed. Occupancy modeling also yielded curves with increasing probabilities of black coral presence with depth at all sites. Colony height increased with depth at 8 out of 9 sites and was positively correlated with coral density at 6 of 9 sites. Overall, 47% of colonies surveyed occupied cryptic habitats and 53% were attached to exposed substrate, but black coral habitat usage patterns varied with depth at 5 of 9 sites. At these sites, colonies on shallower transects (5.0, 10.0 m depth) more frequently displayed cryptic habitat usage while colonies along the deeper transects (15.0, 20.0 m) were more often exposed. In general, coral density, probability of occupancy, height, and exposed habitat utilization increased with depth, while the average degree of overgrowth and number of epibiont taxa were unrelated to depth. Five hypotheses regarding factors potentially limiting the shallow (upper) depth distribution of <i>A. galapagensis</i>—ranging from negative impacts of the physical environment to high predation on exposed substrates—are presented for future testing. These results provide a comprehensive ecological characterization of Galápagos black coral populations that can be used to assess the impact of future environmental change and applied to management decisions for this key marine foundation species in the GMR.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00338-024-02497-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02497-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Distribution and ecology of shallow-water black corals across a depth gradient on Galápagos rocky reefs
Antipathes galapagensis is a prevalent habitat-forming black coral in subtidal ecosystems of the Galápagos Marine Reserve (GMR). Despite their ecological importance and status as a CITES-regulated order, little is known about their depth distribution, population structure and ecology in the GMR. Surveys were conducted in 2021 and 2022 at 9 sites in the central Galápagos Archipelago to investigate how black coral densities, occupancy, size, habitat utilization, and epizoan overgrowth varied between 2.0 and 20.0 m depth. The shallowest black corals occurred at 3.4 m depth, one of the shallowest occurrences of an Antipathes spp. in the world. Coral density increased with depth, with a maximum density of 5.2 colonies per m2 observed across the depth range surveyed. Occupancy modeling also yielded curves with increasing probabilities of black coral presence with depth at all sites. Colony height increased with depth at 8 out of 9 sites and was positively correlated with coral density at 6 of 9 sites. Overall, 47% of colonies surveyed occupied cryptic habitats and 53% were attached to exposed substrate, but black coral habitat usage patterns varied with depth at 5 of 9 sites. At these sites, colonies on shallower transects (5.0, 10.0 m depth) more frequently displayed cryptic habitat usage while colonies along the deeper transects (15.0, 20.0 m) were more often exposed. In general, coral density, probability of occupancy, height, and exposed habitat utilization increased with depth, while the average degree of overgrowth and number of epibiont taxa were unrelated to depth. Five hypotheses regarding factors potentially limiting the shallow (upper) depth distribution of A. galapagensis—ranging from negative impacts of the physical environment to high predation on exposed substrates—are presented for future testing. These results provide a comprehensive ecological characterization of Galápagos black coral populations that can be used to assess the impact of future environmental change and applied to management decisions for this key marine foundation species in the GMR.