有分段的图形:拓扑学和动力学的后果

Michał Kowalewski, Piotr Oprocha
{"title":"有分段的图形:拓扑学和动力学的后果","authors":"Michał Kowalewski, Piotr Oprocha","doi":"arxiv-2405.05407","DOIUrl":null,"url":null,"abstract":"In this paper we compare quasi graphs and generalized $\\sin(1/x)$-type\ncontinua - two classes that generalize topological graphs and contain the\nWarsaw circle as a non-trivial element. We show that neither class is the\nsubset of the other, provide the characterization and present illustrative\nexamples. We unify both approaches by considering the class of tranched graphs,\nconnect it with objects found in literature and describe how the topological\nstructure of its elements restricts possible dynamics.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphs with tranches: consequences for topology and dynamics\",\"authors\":\"Michał Kowalewski, Piotr Oprocha\",\"doi\":\"arxiv-2405.05407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we compare quasi graphs and generalized $\\\\sin(1/x)$-type\\ncontinua - two classes that generalize topological graphs and contain the\\nWarsaw circle as a non-trivial element. We show that neither class is the\\nsubset of the other, provide the characterization and present illustrative\\nexamples. We unify both approaches by considering the class of tranched graphs,\\nconnect it with objects found in literature and describe how the topological\\nstructure of its elements restricts possible dynamics.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.05407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们比较了准图和广义的$\sin(1/x)$-typecontinua--这两类图,它们是拓扑图的广义化,并包含华沙圆作为一个非三维元素。我们证明了这两类图都不是另一类图的子集,提供了特征描述并举例说明。我们通过考虑横切图类来统一这两种方法,将其与文献中发现的对象联系起来,并描述其元素的拓扑结构如何限制可能的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphs with tranches: consequences for topology and dynamics
In this paper we compare quasi graphs and generalized $\sin(1/x)$-type continua - two classes that generalize topological graphs and contain the Warsaw circle as a non-trivial element. We show that neither class is the subset of the other, provide the characterization and present illustrative examples. We unify both approaches by considering the class of tranched graphs, connect it with objects found in literature and describe how the topological structure of its elements restricts possible dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信