经典-量子极限

Isaac Layton, Jonathan Oppenheim
{"title":"经典-量子极限","authors":"Isaac Layton, Jonathan Oppenheim","doi":"10.1103/prxquantum.5.020331","DOIUrl":null,"url":null,"abstract":"The standard notion of a classical limit, represented schematically by <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mo stretchy=\"false\">→</mo><mn>0</mn></math>, provides a method for approximating a quantum system by a classical one. In this work, we explain why the standard classical limit fails when applied to subsystems, and show how one may resolve this by explicitly modeling the decoherence of a subsystem by its environment. Denoting the decoherence time by <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>τ</mi></math>, we demonstrate that a double scaling limit in which <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mo stretchy=\"false\">→</mo><mn>0</mn></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>τ</mi><mo stretchy=\"false\">→</mo><mn>0</mn></math> such that the ratio <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi>f</mi></msub><mo>=</mo><mi>ℏ</mi><mo>/</mo><mi>τ</mi></math> remains fixed leads to an irreversible open-system evolution with well-defined classical and quantum subsystems. The main technical result is showing that, for arbitrary Hamiltonians, the generators of partial versions of the Wigner, Husimi, and Glauber-Sudarshan quasiprobability distributions may all be mapped in the above-mentioned double scaling limit to the same completely positive classical-quantum generator. This provides a regime in which one can study effective and consistent classical-quantum dynamics.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Classical-Quantum Limit\",\"authors\":\"Isaac Layton, Jonathan Oppenheim\",\"doi\":\"10.1103/prxquantum.5.020331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard notion of a classical limit, represented schematically by <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℏ</mi><mo stretchy=\\\"false\\\">→</mo><mn>0</mn></math>, provides a method for approximating a quantum system by a classical one. In this work, we explain why the standard classical limit fails when applied to subsystems, and show how one may resolve this by explicitly modeling the decoherence of a subsystem by its environment. Denoting the decoherence time by <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>τ</mi></math>, we demonstrate that a double scaling limit in which <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℏ</mi><mo stretchy=\\\"false\\\">→</mo><mn>0</mn></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>τ</mi><mo stretchy=\\\"false\\\">→</mo><mn>0</mn></math> such that the ratio <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>E</mi><mi>f</mi></msub><mo>=</mo><mi>ℏ</mi><mo>/</mo><mi>τ</mi></math> remains fixed leads to an irreversible open-system evolution with well-defined classical and quantum subsystems. The main technical result is showing that, for arbitrary Hamiltonians, the generators of partial versions of the Wigner, Husimi, and Glauber-Sudarshan quasiprobability distributions may all be mapped in the above-mentioned double scaling limit to the same completely positive classical-quantum generator. This provides a regime in which one can study effective and consistent classical-quantum dynamics.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.020331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经典极限的标准概念以ℏ→0 为示意图,提供了一种用经典系统逼近量子系统的方法。在这项研究中,我们解释了为什么标准经典极限在应用于子系统时会失效,并展示了如何通过明确模拟子系统的退相干环境来解决这个问题。我们用τ表示退相干时间,证明了在ℏ→0 和 τ→0 的双重缩放极限下,Ef=ℏ/τ 之比保持固定,会导致具有定义明确的经典和量子子系统的不可逆开放系统演化。主要技术结果表明,对于任意汉密尔顿,维格纳、胡西米和格劳伯-苏达山准概率分布的部分版本的生成器都可以在上述双缩放极限中映射到同一个完全正的经典-量子生成器。这就提供了一个可以研究有效而一致的经典量子动力学的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Classical-Quantum Limit

The Classical-Quantum Limit
The standard notion of a classical limit, represented schematically by 0, provides a method for approximating a quantum system by a classical one. In this work, we explain why the standard classical limit fails when applied to subsystems, and show how one may resolve this by explicitly modeling the decoherence of a subsystem by its environment. Denoting the decoherence time by τ, we demonstrate that a double scaling limit in which 0 and τ0 such that the ratio Ef=/τ remains fixed leads to an irreversible open-system evolution with well-defined classical and quantum subsystems. The main technical result is showing that, for arbitrary Hamiltonians, the generators of partial versions of the Wigner, Husimi, and Glauber-Sudarshan quasiprobability distributions may all be mapped in the above-mentioned double scaling limit to the same completely positive classical-quantum generator. This provides a regime in which one can study effective and consistent classical-quantum dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信