{"title":"检测卡西族社交媒体评论中的辱骂性语言","authors":"Arup Baruah, Lakhamti Wahlang, Firstbornson Jyrwa, Floriginia Shadap, Ferdous Barbhuiya, Kuntal Dey","doi":"10.1145/3664285","DOIUrl":null,"url":null,"abstract":"<p>This paper describes the work performed for automated abusive language detection in the Khasi language, a low-resource language spoken primarily in the state of Meghalaya, India. A dataset named Khasi Abusive Language Dataset (KALD) was created which consists of 4,573 human-annotated Khasi YouTube and Facebook comments. A corpus of Khasi text was built and it was used to create Khasi word2vec and fastText word embeddings. Deep learning, traditional machine learning, and ensemble models were used in the study. Experiments were performed using word2vec, fastText, and topic vectors obtained using LDA. Experiments were also performed to check if zero-shot cross-lingual nature of language models such as LaBSE and LASER can be utilized for abusive language detection in the Khasi language. The best F1 score of 0.90725 was obtained by an XGBoost classifier. After feature selection and rebalancing of the dataset, F1 score of 0.91828 and 0.91945 were obtained by an SVM based classifiers.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abusive Language Detection in Khasi Social Media Comments\",\"authors\":\"Arup Baruah, Lakhamti Wahlang, Firstbornson Jyrwa, Floriginia Shadap, Ferdous Barbhuiya, Kuntal Dey\",\"doi\":\"10.1145/3664285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper describes the work performed for automated abusive language detection in the Khasi language, a low-resource language spoken primarily in the state of Meghalaya, India. A dataset named Khasi Abusive Language Dataset (KALD) was created which consists of 4,573 human-annotated Khasi YouTube and Facebook comments. A corpus of Khasi text was built and it was used to create Khasi word2vec and fastText word embeddings. Deep learning, traditional machine learning, and ensemble models were used in the study. Experiments were performed using word2vec, fastText, and topic vectors obtained using LDA. Experiments were also performed to check if zero-shot cross-lingual nature of language models such as LaBSE and LASER can be utilized for abusive language detection in the Khasi language. The best F1 score of 0.90725 was obtained by an XGBoost classifier. After feature selection and rebalancing of the dataset, F1 score of 0.91828 and 0.91945 were obtained by an SVM based classifiers.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3664285\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3664285","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Abusive Language Detection in Khasi Social Media Comments
This paper describes the work performed for automated abusive language detection in the Khasi language, a low-resource language spoken primarily in the state of Meghalaya, India. A dataset named Khasi Abusive Language Dataset (KALD) was created which consists of 4,573 human-annotated Khasi YouTube and Facebook comments. A corpus of Khasi text was built and it was used to create Khasi word2vec and fastText word embeddings. Deep learning, traditional machine learning, and ensemble models were used in the study. Experiments were performed using word2vec, fastText, and topic vectors obtained using LDA. Experiments were also performed to check if zero-shot cross-lingual nature of language models such as LaBSE and LASER can be utilized for abusive language detection in the Khasi language. The best F1 score of 0.90725 was obtained by an XGBoost classifier. After feature selection and rebalancing of the dataset, F1 score of 0.91828 and 0.91945 were obtained by an SVM based classifiers.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.