李球上的全态拉普拉斯和彭罗斯变换

Hideko Sekiguchi
{"title":"李球上的全态拉普拉斯和彭罗斯变换","authors":"Hideko Sekiguchi","doi":"10.1016/j.indag.2024.04.004","DOIUrl":null,"url":null,"abstract":"We prove that any holomorphic function on the Lie ball of even dimension satisfying is obtained uniquely by the higher-dimensional Penrose transform of a Dolbeault cohomology for a twisted line bundle of a certain domain of the Grassmannian of isotropic subspaces. To overcome the difficulties arising from our setting that the line bundle parameter is , we use some techniques from algebraic representation theory.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holomorphic Laplacian on the Lie ball and the Penrose transform\",\"authors\":\"Hideko Sekiguchi\",\"doi\":\"10.1016/j.indag.2024.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that any holomorphic function on the Lie ball of even dimension satisfying is obtained uniquely by the higher-dimensional Penrose transform of a Dolbeault cohomology for a twisted line bundle of a certain domain of the Grassmannian of isotropic subspaces. To overcome the difficulties arising from our setting that the line bundle parameter is , we use some techniques from algebraic representation theory.\",\"PeriodicalId\":501252,\"journal\":{\"name\":\"Indagationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.indag.2024.04.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.04.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在满足偶数维的Lie球上的任何全形函数,都可以通过各向同性子空间的格拉斯曼的某个域的扭曲线束的多尔贝同调的高维彭罗斯变换唯一地得到。为了克服线束参数为 ,这一设定所带来的困难,我们使用了代数表示理论中的一些技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holomorphic Laplacian on the Lie ball and the Penrose transform
We prove that any holomorphic function on the Lie ball of even dimension satisfying is obtained uniquely by the higher-dimensional Penrose transform of a Dolbeault cohomology for a twisted line bundle of a certain domain of the Grassmannian of isotropic subspaces. To overcome the difficulties arising from our setting that the line bundle parameter is , we use some techniques from algebraic representation theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信