用于保险欺诈检测的网络分析:关键案例研究

IF 0.8 Q4 BUSINESS, FINANCE
Bruno Deprez, Félix Vandervorst, Wouter Verbeke, Tim Verdonck, Bart Baesens
{"title":"用于保险欺诈检测的网络分析:关键案例研究","authors":"Bruno Deprez, Félix Vandervorst, Wouter Verbeke, Tim Verdonck, Bart Baesens","doi":"10.1007/s13385-024-00384-6","DOIUrl":null,"url":null,"abstract":"<p>There has been an increasing interest in fraud detection methods, driven by new regulations and by the financial losses linked to fraud. One of the state-of-the-art methods to fight fraud is network analytics. Network analytics leverages the interactions between different entities to detect complex patterns that are indicative of fraud. However, network analytics has only recently been applied to fraud detection in the actuarial literature. Although it shows much potential, many network methods are not yet applied. This paper extends the literature in two main ways. First, we review and apply multiple methods in the context of insurance fraud and assess their predictive power against each other. Second, we analyse the added value of network features over intrinsic features to detect fraud. We conclude that (1) complex methods do not necessarily outperform basic network features, and that (2) network analytics helps to detect different fraud patterns, compared to models trained on claim-specific features alone.</p>","PeriodicalId":44305,"journal":{"name":"European Actuarial Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network analytics for insurance fraud detection: a critical case study\",\"authors\":\"Bruno Deprez, Félix Vandervorst, Wouter Verbeke, Tim Verdonck, Bart Baesens\",\"doi\":\"10.1007/s13385-024-00384-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There has been an increasing interest in fraud detection methods, driven by new regulations and by the financial losses linked to fraud. One of the state-of-the-art methods to fight fraud is network analytics. Network analytics leverages the interactions between different entities to detect complex patterns that are indicative of fraud. However, network analytics has only recently been applied to fraud detection in the actuarial literature. Although it shows much potential, many network methods are not yet applied. This paper extends the literature in two main ways. First, we review and apply multiple methods in the context of insurance fraud and assess their predictive power against each other. Second, we analyse the added value of network features over intrinsic features to detect fraud. We conclude that (1) complex methods do not necessarily outperform basic network features, and that (2) network analytics helps to detect different fraud patterns, compared to models trained on claim-specific features alone.</p>\",\"PeriodicalId\":44305,\"journal\":{\"name\":\"European Actuarial Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Actuarial Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13385-024-00384-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13385-024-00384-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在新法规和欺诈造成的经济损失的推动下,人们对欺诈检测方法的兴趣与日俱增。最先进的反欺诈方法之一是网络分析。网络分析利用不同实体之间的互动来检测表明存在欺诈行为的复杂模式。然而,网络分析法最近才在精算文献中应用于欺诈检测。虽然它显示出很大的潜力,但许多网络方法尚未得到应用。本文主要从两个方面对文献进行了扩展。首先,我们回顾了多种方法在保险欺诈中的应用,并对其预测能力进行了评估。其次,我们分析了网络特征与内在特征相比在检测欺诈方面的附加值。我们的结论是:(1) 复杂的方法并不一定优于基本的网络特征;(2) 与仅根据特定索赔特征训练的模型相比,网络分析有助于检测不同的欺诈模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Network analytics for insurance fraud detection: a critical case study

Network analytics for insurance fraud detection: a critical case study

There has been an increasing interest in fraud detection methods, driven by new regulations and by the financial losses linked to fraud. One of the state-of-the-art methods to fight fraud is network analytics. Network analytics leverages the interactions between different entities to detect complex patterns that are indicative of fraud. However, network analytics has only recently been applied to fraud detection in the actuarial literature. Although it shows much potential, many network methods are not yet applied. This paper extends the literature in two main ways. First, we review and apply multiple methods in the context of insurance fraud and assess their predictive power against each other. Second, we analyse the added value of network features over intrinsic features to detect fraud. We conclude that (1) complex methods do not necessarily outperform basic network features, and that (2) network analytics helps to detect different fraud patterns, compared to models trained on claim-specific features alone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Actuarial Journal
European Actuarial Journal BUSINESS, FINANCE-
CiteScore
2.30
自引率
8.30%
发文量
35
期刊介绍: Actuarial science and actuarial finance deal with the study, modeling and managing of insurance and related financial risks for which stochastic models and statistical methods are available. Topics include classical actuarial mathematics such as life and non-life insurance, pension funds, reinsurance, and also more recent areas of interest such as risk management, asset-and-liability management, solvency, catastrophe modeling, systematic changes in risk parameters, longevity, etc. EAJ is designed for the promotion and development of actuarial science and actuarial finance. For this, we publish original actuarial research papers, either theoretical or applied, with innovative applications, as well as case studies on the evaluation and implementation of new mathematical methods in insurance and actuarial finance. We also welcome survey papers on topics of recent interest in the field. EAJ is the successor of six national actuarial journals, and particularly focuses on links between actuarial theory and practice. In order to serve as a platform for this exchange, we also welcome discussions (typically from practitioners, with a length of 1-3 pages) on published papers that highlight the application aspects of the discussed paper. Such discussions can also suggest modifications of the studied problem which are of particular interest to actuarial practice. Thus, they can serve as motivation for further studies.Finally, EAJ now also publishes ‘Letters’, which are short papers (up to 5 pages) that have academic and/or practical relevance and consist of e.g. an interesting idea, insight, clarification or observation of a cross-connection that deserves publication, but is shorter than a usual research article. A detailed description or proposition of a new relevant research question, short but curious mathematical results that deserve the attention of the actuarial community as well as novel applications of mathematical and actuarial concepts are equally welcome. Letter submissions will be reviewed within 6 weeks, so that they provide an opportunity to get good and pertinent ideas published quickly, while the same refereeing standards as for other submissions apply. Both academics and practitioners are encouraged to contribute to this new format. Authors are invited to submit their papers online via http://euaj.edmgr.com.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信