法诺三折上的瞬子切

Pub Date : 2024-05-14 DOI:10.1007/s00229-024-01559-x
Gaia Comaschi, Marcos Jardim
{"title":"法诺三折上的瞬子切","authors":"Gaia Comaschi, Marcos Jardim","doi":"10.1007/s00229-024-01559-x","DOIUrl":null,"url":null,"abstract":"<p>Generalizing the definitions originally presented by Kuznetsov and Faenzi, we study (possibly non locally free) instanton sheaves of arbitrary rank on Fano threefolds. We classify rank 1 instanton sheaves and describe all curves whose structure sheaves are rank 0 instanton sheaves. In addition, we show that every rank 2 instanton sheaf is an elementary transformation of a locally free instanton sheaf along a rank 0 instanton sheaf. To complete the paper, we describe the moduli space of rank 2 instanton sheaves of charge 2 on a quadric threefold <i>X</i> and show that the full moduli space of rank 2 semistable sheaves on <i>X</i> with Chern classes <span>\\((c_1,c_2,c_3)=(-\\,1,2,0)\\)</span> is connected and contains, besides the instanton component, just one other irreducible component which is also fully described.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instanton sheaves on Fano threefolds\",\"authors\":\"Gaia Comaschi, Marcos Jardim\",\"doi\":\"10.1007/s00229-024-01559-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Generalizing the definitions originally presented by Kuznetsov and Faenzi, we study (possibly non locally free) instanton sheaves of arbitrary rank on Fano threefolds. We classify rank 1 instanton sheaves and describe all curves whose structure sheaves are rank 0 instanton sheaves. In addition, we show that every rank 2 instanton sheaf is an elementary transformation of a locally free instanton sheaf along a rank 0 instanton sheaf. To complete the paper, we describe the moduli space of rank 2 instanton sheaves of charge 2 on a quadric threefold <i>X</i> and show that the full moduli space of rank 2 semistable sheaves on <i>X</i> with Chern classes <span>\\\\((c_1,c_2,c_3)=(-\\\\,1,2,0)\\\\)</span> is connected and contains, besides the instanton component, just one other irreducible component which is also fully described.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01559-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01559-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据库兹涅佐夫(Kuznetsov)和法恩兹(Faenzi)最初提出的定义,我们研究了法诺三折上任意阶的(可能是非局部自由的)瞬子剪。我们对秩 1 的瞬子剪辑进行了分类,并描述了所有结构剪辑为秩 0 瞬子剪辑的曲线。此外,我们还证明了每个阶 2 瞬子剪切都是沿阶 0 瞬子剪切的局部自由瞬子剪切的基本变换。为了使论文更加完整,我们描述了四元三折X上电荷为2的秩2瞬子剪子的模空间,并证明了X上具有Chern类\((c_1,c_2,c_3)=(-\,1,2,0)\的秩2半稳态剪子的完整模空间是连通的,并且除了瞬子分量之外,只包含另一个不可还原分量,这一点也得到了完整的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Instanton sheaves on Fano threefolds

分享
查看原文
Instanton sheaves on Fano threefolds

Generalizing the definitions originally presented by Kuznetsov and Faenzi, we study (possibly non locally free) instanton sheaves of arbitrary rank on Fano threefolds. We classify rank 1 instanton sheaves and describe all curves whose structure sheaves are rank 0 instanton sheaves. In addition, we show that every rank 2 instanton sheaf is an elementary transformation of a locally free instanton sheaf along a rank 0 instanton sheaf. To complete the paper, we describe the moduli space of rank 2 instanton sheaves of charge 2 on a quadric threefold X and show that the full moduli space of rank 2 semistable sheaves on X with Chern classes \((c_1,c_2,c_3)=(-\,1,2,0)\) is connected and contains, besides the instanton component, just one other irreducible component which is also fully described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信