各向同性 Ekeland-Hofer-Zehnder 容量的新估算值

Kun Shi
{"title":"各向同性 Ekeland-Hofer-Zehnder 容量的新估算值","authors":"Kun Shi","doi":"10.1007/s12220-024-01672-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we give an estimation for coisotropic Ekeland–Hofer–Zehnder capacity by combinatorial formula. This result implies that coisotropic Ekeland–Hofer–Zehnder capacity can measure the symmetry of convex bodies with respected to <span>\\(\\mathbb {R}^{n,k}\\)</span> in some sense. Next, we talk about the behavior of coisotropic Ekeland–Hofer–Zehnder capacity of convex domains in the classical phase space with respect to symplectic <i>p</i>-products.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Estimations for Coisotropic Ekeland–Hofer–Zehnder Capacity\",\"authors\":\"Kun Shi\",\"doi\":\"10.1007/s12220-024-01672-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we give an estimation for coisotropic Ekeland–Hofer–Zehnder capacity by combinatorial formula. This result implies that coisotropic Ekeland–Hofer–Zehnder capacity can measure the symmetry of convex bodies with respected to <span>\\\\(\\\\mathbb {R}^{n,k}\\\\)</span> in some sense. Next, we talk about the behavior of coisotropic Ekeland–Hofer–Zehnder capacity of convex domains in the classical phase space with respect to symplectic <i>p</i>-products.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01672-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01672-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过组合公式给出了各向同性埃克朗-霍弗-泽恩德容量的估计值。这一结果意味着各向同性埃克朗-霍弗-泽恩德容量可以在一定意义上测量凸体相对于\(\mathbb {R}^{n,k}\) 的对称性。接下来,我们将讨论在经典相空间中凸域的各向同性埃克朗-霍弗-泽恩德容量相对于交映p-products的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Estimations for Coisotropic Ekeland–Hofer–Zehnder Capacity

In this paper, we give an estimation for coisotropic Ekeland–Hofer–Zehnder capacity by combinatorial formula. This result implies that coisotropic Ekeland–Hofer–Zehnder capacity can measure the symmetry of convex bodies with respected to \(\mathbb {R}^{n,k}\) in some sense. Next, we talk about the behavior of coisotropic Ekeland–Hofer–Zehnder capacity of convex domains in the classical phase space with respect to symplectic p-products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信