凯勒势空间中大地线的度量下限估计

Jingchen Hu
{"title":"凯勒势空间中大地线的度量下限估计","authors":"Jingchen Hu","doi":"10.1007/s12220-024-01654-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish a positive lower bound estimate for the second smallest eigenvalue of the complex Hessian of solutions to a degenerate complex Monge–Ampère equation. As a consequence, we find that in the space of Kähler potentials any two points close to each other in <span>\\(C^2\\)</span> norm can be connected by a geodesic along which the associated metrics do not degenerate.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Metric Lower Bound Estimate for Geodesics in the Space of Kähler Potentials\",\"authors\":\"Jingchen Hu\",\"doi\":\"10.1007/s12220-024-01654-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish a positive lower bound estimate for the second smallest eigenvalue of the complex Hessian of solutions to a degenerate complex Monge–Ampère equation. As a consequence, we find that in the space of Kähler potentials any two points close to each other in <span>\\\\(C^2\\\\)</span> norm can be connected by a geodesic along which the associated metrics do not degenerate.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01654-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01654-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为退化复 Monge-Ampère 方程解的复 Hessian 的第二最小特征值建立了一个正下限估计。因此,我们发现在凯勒势空间中,在(C^2\)规范下相互靠近的任何两点都可以通过一条大地线连接起来,而沿着这条大地线的相关度量不会退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Metric Lower Bound Estimate for Geodesics in the Space of Kähler Potentials

A Metric Lower Bound Estimate for Geodesics in the Space of Kähler Potentials

In this paper, we establish a positive lower bound estimate for the second smallest eigenvalue of the complex Hessian of solutions to a degenerate complex Monge–Ampère equation. As a consequence, we find that in the space of Kähler potentials any two points close to each other in \(C^2\) norm can be connected by a geodesic along which the associated metrics do not degenerate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信