非阿贝尔 p-ADIC 可定义群中的一维子群和连接子群

WILLIAM JOHNSON, NINGYUAN YAO
{"title":"非阿贝尔 p-ADIC 可定义群中的一维子群和连接子群","authors":"WILLIAM JOHNSON, NINGYUAN YAO","doi":"10.1017/jsl.2024.31","DOIUrl":null,"url":null,"abstract":"<p>We generalize two of our previous results on abelian definable groups in <span>p</span>-adically closed fields [12, 13] to the non-abelian case. First, we show that if <span>G</span> is a definable group that is not definably compact, then <span>G</span> has a one-dimensional definable subgroup which is not definably compact. This is a <span>p</span>-adic analogue of the Peterzil–Steinhorn theorem for o-minimal theories [16]. Second, we show that if <span>G</span> is a group definable over the standard model <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Q}_p$</span></span></img></span></span>, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$G^0 = G^{00}$</span></span></img></span></span>. As an application, definably amenable groups over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Q}_p$</span></span></img></span></span> are open subgroups of algebraic groups, up to finite factors. We also prove that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G^0 = G^{00}$</span></span></img></span></span> when <span>G</span> is a definable subgroup of a linear algebraic group, over any model.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ONE-DIMENSIONAL SUBGROUPS AND CONNECTED COMPONENTS IN NON-ABELIAN p-ADIC DEFINABLE GROUPS\",\"authors\":\"WILLIAM JOHNSON, NINGYUAN YAO\",\"doi\":\"10.1017/jsl.2024.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We generalize two of our previous results on abelian definable groups in <span>p</span>-adically closed fields [12, 13] to the non-abelian case. First, we show that if <span>G</span> is a definable group that is not definably compact, then <span>G</span> has a one-dimensional definable subgroup which is not definably compact. This is a <span>p</span>-adic analogue of the Peterzil–Steinhorn theorem for o-minimal theories [16]. Second, we show that if <span>G</span> is a group definable over the standard model <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Q}_p$</span></span></img></span></span>, then <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G^0 = G^{00}$</span></span></img></span></span>. As an application, definably amenable groups over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Q}_p$</span></span></img></span></span> are open subgroups of algebraic groups, up to finite factors. We also prove that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G^0 = G^{00}$</span></span></img></span></span> when <span>G</span> is a definable subgroup of a linear algebraic group, over any model.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2024.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将之前关于 p-adically 闭域中无差别可定义群的两个结果 [12, 13] 推广到非无差别情况。首先,我们证明,如果 G 是一个不可定义紧凑的可定义群,那么 G 有一个不可定义紧凑的一维可定义子群。这是 o 最小理论的 Peterzil-Steinhorn 定理的 p-adic 类似形式[16]。其次,我们证明,如果 G 是标准模型 $\mathbb {Q}_p$ 上的可定义群,那么 $G^0 = G^{00}$。作为应用,$\mathbb {Q}_p$ 上的可定义群是代数群的开放子群,直至有限因子。我们还证明,当 G 是线性代数群的可定义子群时,在任意模型上,$G^0 = G^{00}$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ONE-DIMENSIONAL SUBGROUPS AND CONNECTED COMPONENTS IN NON-ABELIAN p-ADIC DEFINABLE GROUPS

We generalize two of our previous results on abelian definable groups in p-adically closed fields [12, 13] to the non-abelian case. First, we show that if G is a definable group that is not definably compact, then G has a one-dimensional definable subgroup which is not definably compact. This is a p-adic analogue of the Peterzil–Steinhorn theorem for o-minimal theories [16]. Second, we show that if G is a group definable over the standard model $\mathbb {Q}_p$, then $G^0 = G^{00}$. As an application, definably amenable groups over $\mathbb {Q}_p$ are open subgroups of algebraic groups, up to finite factors. We also prove that $G^0 = G^{00}$ when G is a definable subgroup of a linear algebraic group, over any model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信