{"title":"非阿贝尔 p-ADIC 可定义群中的一维子群和连接子群","authors":"WILLIAM JOHNSON, NINGYUAN YAO","doi":"10.1017/jsl.2024.31","DOIUrl":null,"url":null,"abstract":"<p>We generalize two of our previous results on abelian definable groups in <span>p</span>-adically closed fields [12, 13] to the non-abelian case. First, we show that if <span>G</span> is a definable group that is not definably compact, then <span>G</span> has a one-dimensional definable subgroup which is not definably compact. This is a <span>p</span>-adic analogue of the Peterzil–Steinhorn theorem for o-minimal theories [16]. Second, we show that if <span>G</span> is a group definable over the standard model <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Q}_p$</span></span></img></span></span>, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$G^0 = G^{00}$</span></span></img></span></span>. As an application, definably amenable groups over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Q}_p$</span></span></img></span></span> are open subgroups of algebraic groups, up to finite factors. We also prove that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G^0 = G^{00}$</span></span></img></span></span> when <span>G</span> is a definable subgroup of a linear algebraic group, over any model.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ONE-DIMENSIONAL SUBGROUPS AND CONNECTED COMPONENTS IN NON-ABELIAN p-ADIC DEFINABLE GROUPS\",\"authors\":\"WILLIAM JOHNSON, NINGYUAN YAO\",\"doi\":\"10.1017/jsl.2024.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We generalize two of our previous results on abelian definable groups in <span>p</span>-adically closed fields [12, 13] to the non-abelian case. First, we show that if <span>G</span> is a definable group that is not definably compact, then <span>G</span> has a one-dimensional definable subgroup which is not definably compact. This is a <span>p</span>-adic analogue of the Peterzil–Steinhorn theorem for o-minimal theories [16]. Second, we show that if <span>G</span> is a group definable over the standard model <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Q}_p$</span></span></img></span></span>, then <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G^0 = G^{00}$</span></span></img></span></span>. As an application, definably amenable groups over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Q}_p$</span></span></img></span></span> are open subgroups of algebraic groups, up to finite factors. We also prove that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513074612283-0489:S0022481224000318:S0022481224000318_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G^0 = G^{00}$</span></span></img></span></span> when <span>G</span> is a definable subgroup of a linear algebraic group, over any model.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2024.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们将之前关于 p-adically 闭域中无差别可定义群的两个结果 [12, 13] 推广到非无差别情况。首先,我们证明,如果 G 是一个不可定义紧凑的可定义群,那么 G 有一个不可定义紧凑的一维可定义子群。这是 o 最小理论的 Peterzil-Steinhorn 定理的 p-adic 类似形式[16]。其次,我们证明,如果 G 是标准模型 $\mathbb {Q}_p$ 上的可定义群,那么 $G^0 = G^{00}$。作为应用,$\mathbb {Q}_p$ 上的可定义群是代数群的开放子群,直至有限因子。我们还证明,当 G 是线性代数群的可定义子群时,在任意模型上,$G^0 = G^{00}$ 。
ONE-DIMENSIONAL SUBGROUPS AND CONNECTED COMPONENTS IN NON-ABELIAN p-ADIC DEFINABLE GROUPS
We generalize two of our previous results on abelian definable groups in p-adically closed fields [12, 13] to the non-abelian case. First, we show that if G is a definable group that is not definably compact, then G has a one-dimensional definable subgroup which is not definably compact. This is a p-adic analogue of the Peterzil–Steinhorn theorem for o-minimal theories [16]. Second, we show that if G is a group definable over the standard model $\mathbb {Q}_p$, then $G^0 = G^{00}$. As an application, definably amenable groups over $\mathbb {Q}_p$ are open subgroups of algebraic groups, up to finite factors. We also prove that $G^0 = G^{00}$ when G is a definable subgroup of a linear algebraic group, over any model.