关于 E. Meckes 提出的弧上单元特征值过程问题

IF 1.4 3区 数学 Q1 MATHEMATICS
L. Kryvonos, E. B. Saff
{"title":"关于 E. Meckes 提出的弧上单元特征值过程问题","authors":"L. Kryvonos,&nbsp;E. B. Saff","doi":"10.1007/s13324-024-00919-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study the problem originally communicated by E. Meckes on the asymptotics for the eigenvalues of the kernel of the unitary eigenvalue process of a random <span>\\(n \\times n\\)</span> matrix. The eigenvalues <span>\\(p_{j}\\)</span> of the kernel are, in turn, associated with the discrete prolate spheroidal wave functions. We consider the eigenvalue counting function <span>\\(|G(x,n)|:=\\#\\{j:p_j&gt;Ce^{-x n}\\}\\)</span>, (<span>\\(C&gt;0\\)</span> here is a fixed constant) and establish the asymptotic behavior of its average over the interval <span>\\(x \\in (\\lambda -\\varepsilon , \\lambda +\\varepsilon )\\)</span> by relating the function |<i>G</i>(<i>x</i>, <i>n</i>)| to the solution <i>J</i>(<i>q</i>) of the following energy problem on the unit circle <span>\\(S^{1}\\)</span>, which is of independent interest. Namely, for given <span>\\(\\theta \\)</span>, <span>\\(0&lt;\\theta &lt; 2 \\pi \\)</span>, and given <i>q</i>, <span>\\(0&lt;q&lt;1\\)</span>, we determine the function <span>\\(J(q) =\\inf \\{I(\\mu ): \\mu \\in \\mathcal {P}(S^{1}), \\mu (A_{\\theta }) = q\\}\\)</span>, where <span>\\(I(\\mu ):= \\int \\!\\int \\log \\frac{1}{|z - \\zeta |} d\\mu (z) d\\mu (\\zeta )\\)</span> is the logarithmic energy of a probability measure <span>\\(\\mu \\)</span> supported on the unit circle and <span>\\(A_{\\theta }\\)</span> is the arc from <span>\\(e^{-i \\theta /2}\\)</span> to <span>\\(e^{i \\theta /2}\\)</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a problem of E. Meckes for the unitary eigenvalue process on an arc\",\"authors\":\"L. Kryvonos,&nbsp;E. B. Saff\",\"doi\":\"10.1007/s13324-024-00919-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the problem originally communicated by E. Meckes on the asymptotics for the eigenvalues of the kernel of the unitary eigenvalue process of a random <span>\\\\(n \\\\times n\\\\)</span> matrix. The eigenvalues <span>\\\\(p_{j}\\\\)</span> of the kernel are, in turn, associated with the discrete prolate spheroidal wave functions. We consider the eigenvalue counting function <span>\\\\(|G(x,n)|:=\\\\#\\\\{j:p_j&gt;Ce^{-x n}\\\\}\\\\)</span>, (<span>\\\\(C&gt;0\\\\)</span> here is a fixed constant) and establish the asymptotic behavior of its average over the interval <span>\\\\(x \\\\in (\\\\lambda -\\\\varepsilon , \\\\lambda +\\\\varepsilon )\\\\)</span> by relating the function |<i>G</i>(<i>x</i>, <i>n</i>)| to the solution <i>J</i>(<i>q</i>) of the following energy problem on the unit circle <span>\\\\(S^{1}\\\\)</span>, which is of independent interest. Namely, for given <span>\\\\(\\\\theta \\\\)</span>, <span>\\\\(0&lt;\\\\theta &lt; 2 \\\\pi \\\\)</span>, and given <i>q</i>, <span>\\\\(0&lt;q&lt;1\\\\)</span>, we determine the function <span>\\\\(J(q) =\\\\inf \\\\{I(\\\\mu ): \\\\mu \\\\in \\\\mathcal {P}(S^{1}), \\\\mu (A_{\\\\theta }) = q\\\\}\\\\)</span>, where <span>\\\\(I(\\\\mu ):= \\\\int \\\\!\\\\int \\\\log \\\\frac{1}{|z - \\\\zeta |} d\\\\mu (z) d\\\\mu (\\\\zeta )\\\\)</span> is the logarithmic energy of a probability measure <span>\\\\(\\\\mu \\\\)</span> supported on the unit circle and <span>\\\\(A_{\\\\theta }\\\\)</span> is the arc from <span>\\\\(e^{-i \\\\theta /2}\\\\)</span> to <span>\\\\(e^{i \\\\theta /2}\\\\)</span>.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00919-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00919-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 E. Meckes 最初提出的关于随机 \(n \times n\) 矩阵的单元特征值过程的核特征值的渐近线问题。核的特征值 \(p_{j}\)又与离散的球面波函数相关联。我们考虑特征值计数函数 \(|G(x,n)|:=\#\{j:p_j>Ce^{-x n}\}\), (\(C>;这里是一个固定常数),并通过将函数 |G(x, n)|与下面单位圆 \(S^{1}\)上能量问题的解 J(q)相关联,建立其在区间 \(x \in (\lambda -\varepsilon , \lambda +\varepsilon )\) 上的平均值的渐近行为。也就是说,对于给定的\(theta \),\(0<theta < 2 \pi \),以及给定的q,\(0<q<1\),我们确定函数 \(J(q) =\inf \{I(\mu ):\mu \in \mathcal {P}(S^{1}), \mu (A_{\theta }) = q\}\), where \(I(\mu ):= \int \!\是支持在单位圆上的概率度量\(\mu \)的对数能量,而\(A_{theta }\) 是从\(e^{-i \theta /2}\)到\(e^{i \theta /2}\)的弧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On a problem of E. Meckes for the unitary eigenvalue process on an arc

On a problem of E. Meckes for the unitary eigenvalue process on an arc

We study the problem originally communicated by E. Meckes on the asymptotics for the eigenvalues of the kernel of the unitary eigenvalue process of a random \(n \times n\) matrix. The eigenvalues \(p_{j}\) of the kernel are, in turn, associated with the discrete prolate spheroidal wave functions. We consider the eigenvalue counting function \(|G(x,n)|:=\#\{j:p_j>Ce^{-x n}\}\), (\(C>0\) here is a fixed constant) and establish the asymptotic behavior of its average over the interval \(x \in (\lambda -\varepsilon , \lambda +\varepsilon )\) by relating the function |G(xn)| to the solution J(q) of the following energy problem on the unit circle \(S^{1}\), which is of independent interest. Namely, for given \(\theta \), \(0<\theta < 2 \pi \), and given q, \(0<q<1\), we determine the function \(J(q) =\inf \{I(\mu ): \mu \in \mathcal {P}(S^{1}), \mu (A_{\theta }) = q\}\), where \(I(\mu ):= \int \!\int \log \frac{1}{|z - \zeta |} d\mu (z) d\mu (\zeta )\) is the logarithmic energy of a probability measure \(\mu \) supported on the unit circle and \(A_{\theta }\) is the arc from \(e^{-i \theta /2}\) to \(e^{i \theta /2}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信