具有一维一般点相互作用的薛定谔算子的扰动行列式和列文森公式

IF 1.4 3区 数学 Q1 MATHEMATICS
M. Fazeel Anwar, Muhammad Usman, Muhammad Danish Zia
{"title":"具有一维一般点相互作用的薛定谔算子的扰动行列式和列文森公式","authors":"M. Fazeel Anwar,&nbsp;Muhammad Usman,&nbsp;Muhammad Danish Zia","doi":"10.1007/s13324-024-00922-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the one-dimensional Schrödinger operator with properly connecting general point interaction at the origin. We derive a trace formula for trace of difference of resolvents of perturbed and unperturbed Schrödinger operators in terms of a Wronskian which results in an explicit expression for perturbation determinant. Using the estimate for large-time real argument on the trace norm of the resolvent difference of the perturbed and unperturbed Schrödinger operators we express the spectral shift function in terms of perturbation determinant. Under certain integrability conditions on the potential function, we calculate low-energy asymptotics for the perturbation determinant and prove an analog of Levinson’s formula</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perturbation determinant and Levinson’s formula for Schrödinger operators with 1-D general point interaction\",\"authors\":\"M. Fazeel Anwar,&nbsp;Muhammad Usman,&nbsp;Muhammad Danish Zia\",\"doi\":\"10.1007/s13324-024-00922-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the one-dimensional Schrödinger operator with properly connecting general point interaction at the origin. We derive a trace formula for trace of difference of resolvents of perturbed and unperturbed Schrödinger operators in terms of a Wronskian which results in an explicit expression for perturbation determinant. Using the estimate for large-time real argument on the trace norm of the resolvent difference of the perturbed and unperturbed Schrödinger operators we express the spectral shift function in terms of perturbation determinant. Under certain integrability conditions on the potential function, we calculate low-energy asymptotics for the perturbation determinant and prove an analog of Levinson’s formula</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00922-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00922-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是在原点适当连接一般点相互作用的一维薛定谔算子。我们用 Wronskian 推导出扰动和未扰动薛定谔算子的解析子差的迹公式,从而得到扰动行列式的明确表达式。利用关于受扰动和未受扰动薛定谔算子的解析差的迹规范的大时间实参数估计,我们用扰动行列式来表达谱移函数。在势函数的某些可积分性条件下,我们计算了扰动行列式的低能渐近线,并证明了列文森公式的类似公式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perturbation determinant and Levinson’s formula for Schrödinger operators with 1-D general point interaction

We consider the one-dimensional Schrödinger operator with properly connecting general point interaction at the origin. We derive a trace formula for trace of difference of resolvents of perturbed and unperturbed Schrödinger operators in terms of a Wronskian which results in an explicit expression for perturbation determinant. Using the estimate for large-time real argument on the trace norm of the resolvent difference of the perturbed and unperturbed Schrödinger operators we express the spectral shift function in terms of perturbation determinant. Under certain integrability conditions on the potential function, we calculate low-energy asymptotics for the perturbation determinant and prove an analog of Levinson’s formula

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信