连续函数网格的投影带特征和一些阶属性

IF 0.8 3区 数学 Q2 MATHEMATICS
Eugene Bilokopytov
{"title":"连续函数网格的投影带特征和一些阶属性","authors":"Eugene Bilokopytov","doi":"10.1007/s11117-024-01050-7","DOIUrl":null,"url":null,"abstract":"<p>We show that for an ideal <i>H</i> in an Archimedean vector lattice <i>F</i> the following conditions are equivalent:</p><ul>\n<li>\n<p><i>H</i> is a projection band;</p>\n</li>\n<li>\n<p>Any collection of mutually disjoint vectors in <i>H</i>, which is order bounded in <i>F</i>, is order bounded in <i>H</i>;</p>\n</li>\n<li>\n<p><i>H</i> is an infinite meet-distributive element of the lattice <span>\\({\\mathcal {I}}_{F}\\)</span> of all ideals in <i>F</i> in the sense that <span>\\(\\bigcap \\nolimits _{J\\in {\\mathcal {J}}}\\left( H+ J\\right) =H+ \\bigcap {\\mathcal {J}}\\)</span>, for any <span>\\({\\mathcal {J}}\\subset {\\mathcal {I}}_{F}\\)</span>.</p>\n</li>\n</ul><p> Additionally, we show that if <i>F</i> is uniformly complete and <i>H</i> is a uniformly closed principal ideal, then <i>H</i> is a projection band. In the process we investigate some order properties of lattices of continuous functions on Tychonoff topological spaces.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of the projection bands and some order properties of the lattices of continuous functions\",\"authors\":\"Eugene Bilokopytov\",\"doi\":\"10.1007/s11117-024-01050-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that for an ideal <i>H</i> in an Archimedean vector lattice <i>F</i> the following conditions are equivalent:</p><ul>\\n<li>\\n<p><i>H</i> is a projection band;</p>\\n</li>\\n<li>\\n<p>Any collection of mutually disjoint vectors in <i>H</i>, which is order bounded in <i>F</i>, is order bounded in <i>H</i>;</p>\\n</li>\\n<li>\\n<p><i>H</i> is an infinite meet-distributive element of the lattice <span>\\\\({\\\\mathcal {I}}_{F}\\\\)</span> of all ideals in <i>F</i> in the sense that <span>\\\\(\\\\bigcap \\\\nolimits _{J\\\\in {\\\\mathcal {J}}}\\\\left( H+ J\\\\right) =H+ \\\\bigcap {\\\\mathcal {J}}\\\\)</span>, for any <span>\\\\({\\\\mathcal {J}}\\\\subset {\\\\mathcal {I}}_{F}\\\\)</span>.</p>\\n</li>\\n</ul><p> Additionally, we show that if <i>F</i> is uniformly complete and <i>H</i> is a uniformly closed principal ideal, then <i>H</i> is a projection band. In the process we investigate some order properties of lattices of continuous functions on Tychonoff topological spaces.</p>\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-024-01050-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01050-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于阿基米德向量网格 F 中的理想 H,以下条件是等价的:H 是一个投影带;H 中任何互不相交的向量集合在 F 中都是有序的,在 H 中也是有序的;H 是 F 中所有理想的晶格 \({\mathcal {I}}_{F}\) 的无限相遇分布元素,即 \(\bigcap \nolimits _{J\in {\mathcal {J}}}left( H+ J\right) =H+ \bigcap {\mathcal {J}}\)、对于任何 \({\mathcal {J}} 子集 {\mathcal {I}}_{F}\).此外,我们还证明了如果 F 是均匀完全的,而 H 是一个均匀封闭的主理想,那么 H 就是一个投影带。在此过程中,我们还研究了泰克诺夫拓扑空间上连续函数网格的一些阶属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of the projection bands and some order properties of the lattices of continuous functions

We show that for an ideal H in an Archimedean vector lattice F the following conditions are equivalent:

  • H is a projection band;

  • Any collection of mutually disjoint vectors in H, which is order bounded in F, is order bounded in H;

  • H is an infinite meet-distributive element of the lattice \({\mathcal {I}}_{F}\) of all ideals in F in the sense that \(\bigcap \nolimits _{J\in {\mathcal {J}}}\left( H+ J\right) =H+ \bigcap {\mathcal {J}}\), for any \({\mathcal {J}}\subset {\mathcal {I}}_{F}\).

Additionally, we show that if F is uniformly complete and H is a uniformly closed principal ideal, then H is a projection band. In the process we investigate some order properties of lattices of continuous functions on Tychonoff topological spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信