纳维-斯托克斯流中形状和拓扑优化的能量稳定梯度流方案

Jiajie Li, Shengfeng Zhu
{"title":"纳维-斯托克斯流中形状和拓扑优化的能量稳定梯度流方案","authors":"Jiajie Li, Shengfeng Zhu","doi":"arxiv-2405.05098","DOIUrl":null,"url":null,"abstract":"We study topology optimization governed by the incompressible Navier-Stokes\nflows using a phase field model. Novel stabilized semi-implicit schemes for the\ngradient flows of Allen-Cahn and Cahn-Hilliard types are proposed for solving\nthe resulting optimal control problem. Unconditional energy stability is shown\nfor the gradient flow schemes in continuous and discrete spaces. Numerical\nexperiments of computational fluid dynamics in 2d and 3d show the effectiveness\nand robustness of the optimization algorithms proposed.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy stable gradient flow schemes for shape and topology optimization in Navier-Stokes flows\",\"authors\":\"Jiajie Li, Shengfeng Zhu\",\"doi\":\"arxiv-2405.05098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study topology optimization governed by the incompressible Navier-Stokes\\nflows using a phase field model. Novel stabilized semi-implicit schemes for the\\ngradient flows of Allen-Cahn and Cahn-Hilliard types are proposed for solving\\nthe resulting optimal control problem. Unconditional energy stability is shown\\nfor the gradient flow schemes in continuous and discrete spaces. Numerical\\nexperiments of computational fluid dynamics in 2d and 3d show the effectiveness\\nand robustness of the optimization algorithms proposed.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.05098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用相场模型研究了不可压缩纳维-斯托克斯流的拓扑优化问题。我们提出了 Allen-Cahn 和 Cahn-Hilliard 两种梯度流的新型稳定半隐式方案,用于求解由此产生的最优控制问题。显示了梯度流方案在连续和离散空间中的无条件能量稳定性。二维和三维计算流体力学的数值实验表明了所提出的优化算法的有效性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy stable gradient flow schemes for shape and topology optimization in Navier-Stokes flows
We study topology optimization governed by the incompressible Navier-Stokes flows using a phase field model. Novel stabilized semi-implicit schemes for the gradient flows of Allen-Cahn and Cahn-Hilliard types are proposed for solving the resulting optimal control problem. Unconditional energy stability is shown for the gradient flow schemes in continuous and discrete spaces. Numerical experiments of computational fluid dynamics in 2d and 3d show the effectiveness and robustness of the optimization algorithms proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信