固定和切换图谱下具有非线性固有动态的羊群

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Jiu-Gang Dong
{"title":"固定和切换图谱下具有非线性固有动态的羊群","authors":"Jiu-Gang Dong","doi":"10.1137/23m1574270","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1242-1271, June 2024. <br/> Abstract.This paper studies the dynamic interplay between inherent agent dynamics and velocity alignment in the ensemble of Cucker–Smale (CS) flocks under both fixed and switching interaction topologies. For the fixed topology network modeled by a rooted digraph, we provide sufficient frameworks for exponential convergence of flocking provided that the Lipschitz constant of nonlinear dynamics is less than a given bound in terms of initial state and system parameters. Similar to the CS system free of inherent dynamics, our results exhibit threshold phenomena depending on the quantity of collectivity in of the rooted digraph. For the case with switching topologies being rooted in a sequence of time-blocks, we present similar sufficient frameworks leading to convergence of flocking in terms of initial state and system parameters. Our results hold for both continuous time and discrete time. Numerical simulations are performed to illustrate our theoretical results.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"46 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flocks with Nonlinear Inherent Dynamics under Fixed and Switching Digraphs\",\"authors\":\"Jiu-Gang Dong\",\"doi\":\"10.1137/23m1574270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1242-1271, June 2024. <br/> Abstract.This paper studies the dynamic interplay between inherent agent dynamics and velocity alignment in the ensemble of Cucker–Smale (CS) flocks under both fixed and switching interaction topologies. For the fixed topology network modeled by a rooted digraph, we provide sufficient frameworks for exponential convergence of flocking provided that the Lipschitz constant of nonlinear dynamics is less than a given bound in terms of initial state and system parameters. Similar to the CS system free of inherent dynamics, our results exhibit threshold phenomena depending on the quantity of collectivity in of the rooted digraph. For the case with switching topologies being rooted in a sequence of time-blocks, we present similar sufficient frameworks leading to convergence of flocking in terms of initial state and system parameters. Our results hold for both continuous time and discrete time. Numerical simulations are performed to illustrate our theoretical results.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1574270\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1574270","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用动力系统期刊》第 23 卷第 2 期第 1242-1271 页,2024 年 6 月。 摘要:本文研究了在固定拓扑和切换交互拓扑下,Cucker-Smale(CS)羊群集合中固有的代理动态和速度排列之间的动态相互作用。对于有根数字图建模的固定拓扑网络,只要非线性动力学的 Lipschitz 常数小于初始状态和系统参数的给定约束,我们就能为羊群的指数收敛提供充分的框架。与没有固有动力学的 CS 系统类似,我们的结果显示出阈值现象,这取决于有根数字图中的集合数量。对于切换拓扑根植于时间块序列的情况,我们提出了类似的充分框架,从而导致初始状态和系统参数方面的成群收敛。我们的结果既适用于连续时间,也适用于离散时间。为了说明我们的理论结果,我们进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flocks with Nonlinear Inherent Dynamics under Fixed and Switching Digraphs
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1242-1271, June 2024.
Abstract.This paper studies the dynamic interplay between inherent agent dynamics and velocity alignment in the ensemble of Cucker–Smale (CS) flocks under both fixed and switching interaction topologies. For the fixed topology network modeled by a rooted digraph, we provide sufficient frameworks for exponential convergence of flocking provided that the Lipschitz constant of nonlinear dynamics is less than a given bound in terms of initial state and system parameters. Similar to the CS system free of inherent dynamics, our results exhibit threshold phenomena depending on the quantity of collectivity in of the rooted digraph. For the case with switching topologies being rooted in a sequence of time-blocks, we present similar sufficient frameworks leading to convergence of flocking in terms of initial state and system parameters. Our results hold for both continuous time and discrete time. Numerical simulations are performed to illustrate our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信