关于几类图的双罗马支配问题

Pub Date : 2024-05-08 DOI:10.1007/s00010-024-01071-3
Tatjana Zec, Dragan Matić, Marko Djukanović
{"title":"关于几类图的双罗马支配问题","authors":"Tatjana Zec, Dragan Matić, Marko Djukanović","doi":"10.1007/s00010-024-01071-3","DOIUrl":null,"url":null,"abstract":"<p><i>A double Roman domination function</i> (DRDF) on a graph <span>\\(G=(V,E)\\)</span> is a mapping <span>\\(f :V\\rightarrow \\{0,1,2,3\\}\\)</span> satisfying the conditions: (<i>i</i>) each vertex with 0 assigned is adjacent to a vertex with 3 assigned or at least two vertices with 2 assigned and (<i>ii</i>) each vertex with 1 assigned is adjacent to at least one vertex with 2 or 3 assigned. The weight of a DRDF <i>f</i> is defined as the sum <span>\\(\\sum _{v\\in V}f(v)\\)</span>. The minimum weight of a DRDF on a graph <i>G</i> is called the <i>double Roman domination number</i> (DRDN) of <i>G</i>. This study establishes the values on DRDN for several graph classes. The exact values of DRDN are proved for Kneser graphs <span>\\(K_{n,k},n\\ge k(k+2)\\)</span>, Johnson graphs <span>\\(J_{n,2}\\)</span>, for a few classes of convex polytopes, and the flower snarks. Moreover, tight lower and upper bounds on SRDN are proved for some convex polytopes. For the generalized Petersen graphs <span>\\(P_{n,3}, n \\not \\equiv 0\\,(\\mathrm {mod\\ 4})\\)</span>, we make a further improvement on the best known upper bound from the literature.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On double Roman domination problem for several graph classes\",\"authors\":\"Tatjana Zec, Dragan Matić, Marko Djukanović\",\"doi\":\"10.1007/s00010-024-01071-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>A double Roman domination function</i> (DRDF) on a graph <span>\\\\(G=(V,E)\\\\)</span> is a mapping <span>\\\\(f :V\\\\rightarrow \\\\{0,1,2,3\\\\}\\\\)</span> satisfying the conditions: (<i>i</i>) each vertex with 0 assigned is adjacent to a vertex with 3 assigned or at least two vertices with 2 assigned and (<i>ii</i>) each vertex with 1 assigned is adjacent to at least one vertex with 2 or 3 assigned. The weight of a DRDF <i>f</i> is defined as the sum <span>\\\\(\\\\sum _{v\\\\in V}f(v)\\\\)</span>. The minimum weight of a DRDF on a graph <i>G</i> is called the <i>double Roman domination number</i> (DRDN) of <i>G</i>. This study establishes the values on DRDN for several graph classes. The exact values of DRDN are proved for Kneser graphs <span>\\\\(K_{n,k},n\\\\ge k(k+2)\\\\)</span>, Johnson graphs <span>\\\\(J_{n,2}\\\\)</span>, for a few classes of convex polytopes, and the flower snarks. Moreover, tight lower and upper bounds on SRDN are proved for some convex polytopes. For the generalized Petersen graphs <span>\\\\(P_{n,3}, n \\\\not \\\\equiv 0\\\\,(\\\\mathrm {mod\\\\ 4})\\\\)</span>, we make a further improvement on the best known upper bound from the literature.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01071-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01071-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图(G=(V,E))上的双罗马支配函数(DRDF)是一个映射(f :V\rightarrow \{0,1,2,3\}),满足以下条件:(i) 每个赋值为 0 的顶点与一个赋值为 3 的顶点或至少两个赋值为 2 的顶点相邻;(ii) 每个赋值为 1 的顶点与至少一个赋值为 2 或 3 的顶点相邻。DRDF f 的权重定义为总和(sum _{v\in V}f(v)\).图 G 上 DRDF 的最小权重称为图 G 的双罗马支配数(DRDN)。对于克奈瑟图(K_{n,k},n\ge k(k+2)\)、约翰逊图(J_{n,2}\)、几类凸多胞形和花蛇图,都证明了 DRDN 的精确值。此外,还证明了一些凸多胞形的 SRDN 的紧下界和紧上界。对于广义彼得森图(P_{n,3}, n \not \equiv 0\, (\mathrm {mod\ 4})),我们进一步改进了文献中已知的最佳上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On double Roman domination problem for several graph classes

分享
查看原文
On double Roman domination problem for several graph classes

A double Roman domination function (DRDF) on a graph \(G=(V,E)\) is a mapping \(f :V\rightarrow \{0,1,2,3\}\) satisfying the conditions: (i) each vertex with 0 assigned is adjacent to a vertex with 3 assigned or at least two vertices with 2 assigned and (ii) each vertex with 1 assigned is adjacent to at least one vertex with 2 or 3 assigned. The weight of a DRDF f is defined as the sum \(\sum _{v\in V}f(v)\). The minimum weight of a DRDF on a graph G is called the double Roman domination number (DRDN) of G. This study establishes the values on DRDN for several graph classes. The exact values of DRDN are proved for Kneser graphs \(K_{n,k},n\ge k(k+2)\), Johnson graphs \(J_{n,2}\), for a few classes of convex polytopes, and the flower snarks. Moreover, tight lower and upper bounds on SRDN are proved for some convex polytopes. For the generalized Petersen graphs \(P_{n,3}, n \not \equiv 0\,(\mathrm {mod\ 4})\), we make a further improvement on the best known upper bound from the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信