概率斯特林数及其应用

Pub Date : 2024-05-08 DOI:10.1007/s00010-024-01073-1
José A. Adell, Beáta Bényi
{"title":"概率斯特林数及其应用","authors":"José A. Adell, Beáta Bényi","doi":"10.1007/s00010-024-01073-1","DOIUrl":null,"url":null,"abstract":"<p>We introduce probabilistic Stirling numbers of the first kind <span>\\(s_Y(n,k)\\)</span> associated with a complex-valued random variable <i>Y</i> satisfying appropriate integrability conditions, thus completing the notion of probabilistic Stirling numbers of the second kind <span>\\(S_Y(n,k)\\)</span> previously considered by the first author. Combinatorial interpretations, recursion formulas, and connections between <span>\\(s_Y(n,k)\\)</span> and <span>\\(S_Y(n,k)\\)</span> are given. We show that such numbers describe a large subset of potential polynomials, on the one hand, and the moments of sums of i. i. d. random variables, on the other, establishing their precise asymptotic behavior without appealing to the central limit theorem. We explicitly compute these numbers when <i>Y</i> has a certain familiar distribution, providing at the same time their combinatorial meaning.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Stirling numbers and applications\",\"authors\":\"José A. Adell, Beáta Bényi\",\"doi\":\"10.1007/s00010-024-01073-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce probabilistic Stirling numbers of the first kind <span>\\\\(s_Y(n,k)\\\\)</span> associated with a complex-valued random variable <i>Y</i> satisfying appropriate integrability conditions, thus completing the notion of probabilistic Stirling numbers of the second kind <span>\\\\(S_Y(n,k)\\\\)</span> previously considered by the first author. Combinatorial interpretations, recursion formulas, and connections between <span>\\\\(s_Y(n,k)\\\\)</span> and <span>\\\\(S_Y(n,k)\\\\)</span> are given. We show that such numbers describe a large subset of potential polynomials, on the one hand, and the moments of sums of i. i. d. random variables, on the other, establishing their precise asymptotic behavior without appealing to the central limit theorem. We explicitly compute these numbers when <i>Y</i> has a certain familiar distribution, providing at the same time their combinatorial meaning.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01073-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01073-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了与满足适当可整性条件的复值随机变量 Y 相关联的第一类概率斯特林数 (s_Y(n,k)\),从而完善了第一作者之前考虑过的第二类概率斯特林数 (S_Y(n,k)\)的概念。我们给出了组合解释、递归公式以及 \(s_Y(n,k)\) 和 \(S_Y(n,k)\) 之间的联系。我们证明,这些数一方面描述了潜在多项式的一个大子集,另一方面描述了 i. i. d. 随机变量之和的矩,并在不求助于中心极限定理的情况下确定了它们的精确渐近行为。当 Y 具有某种我们熟悉的分布时,我们会明确计算这些数字,同时提供它们的组合意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Probabilistic Stirling numbers and applications

We introduce probabilistic Stirling numbers of the first kind \(s_Y(n,k)\) associated with a complex-valued random variable Y satisfying appropriate integrability conditions, thus completing the notion of probabilistic Stirling numbers of the second kind \(S_Y(n,k)\) previously considered by the first author. Combinatorial interpretations, recursion formulas, and connections between \(s_Y(n,k)\) and \(S_Y(n,k)\) are given. We show that such numbers describe a large subset of potential polynomials, on the one hand, and the moments of sums of i. i. d. random variables, on the other, establishing their precise asymptotic behavior without appealing to the central limit theorem. We explicitly compute these numbers when Y has a certain familiar distribution, providing at the same time their combinatorial meaning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信