约翰逊和克奈瑟图的格罗莫夫双曲性

Pub Date : 2024-05-08 DOI:10.1007/s00010-024-01076-y
Jesús Méndez, Rosalio Reyes, José M. Rodríguez, José M. Sigarreta
{"title":"约翰逊和克奈瑟图的格罗莫夫双曲性","authors":"Jesús Méndez,&nbsp;Rosalio Reyes,&nbsp;José M. Rodríguez,&nbsp;José M. Sigarreta","doi":"10.1007/s00010-024-01076-y","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of Gromov hyperbolicity is a geometric concept that leads to a rich general theory. Johnson and Kneser graphs are interesting combinatorial graphs defined from systems of sets. In this work we compute the precise value of the hyperbolicity constant of every Johnson graph. Also, we obtain good bounds on the hyperbolicity constant of every Kneser graph, and in many cases, we even compute its precise value.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01076-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Gromov hyperbolicity of Johnson and Kneser graphs\",\"authors\":\"Jesús Méndez,&nbsp;Rosalio Reyes,&nbsp;José M. Rodríguez,&nbsp;José M. Sigarreta\",\"doi\":\"10.1007/s00010-024-01076-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The concept of Gromov hyperbolicity is a geometric concept that leads to a rich general theory. Johnson and Kneser graphs are interesting combinatorial graphs defined from systems of sets. In this work we compute the precise value of the hyperbolicity constant of every Johnson graph. Also, we obtain good bounds on the hyperbolicity constant of every Kneser graph, and in many cases, we even compute its precise value.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01076-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01076-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01076-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

格罗莫夫双曲概念是一个几何概念,它引出了丰富的一般理论。约翰逊图和克奈瑟图是由集合系统定义的有趣组合图。在这项研究中,我们计算了每个约翰逊图的双曲常数的精确值。此外,我们还获得了每个克奈瑟图的双曲常数的良好边界,在许多情况下,我们甚至计算出了其精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gromov hyperbolicity of Johnson and Kneser graphs

分享
查看原文
Gromov hyperbolicity of Johnson and Kneser graphs

The concept of Gromov hyperbolicity is a geometric concept that leads to a rich general theory. Johnson and Kneser graphs are interesting combinatorial graphs defined from systems of sets. In this work we compute the precise value of the hyperbolicity constant of every Johnson graph. Also, we obtain good bounds on the hyperbolicity constant of every Kneser graph, and in many cases, we even compute its precise value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信