{"title":"作用于解析函数希尔伯特空间的广义塞萨罗算子","authors":"Alejandro Mas, Noel Merchán, Elena de la Rosa","doi":"10.1007/s43034-024-00365-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathbb {D}\\)</span> denote the unit disc in <span>\\(\\mathbb {C}\\)</span>. We define the generalized Cesàro operator as follows: </p><div><div><span>$$\\begin{aligned} C_{\\omega }(f)(z)=\\int _0^1 f(tz)\\left( \\frac{1}{z}\\int _0^z B^{\\omega }_t(u)\\,\\textrm{d}u\\right) \\,\\omega (t)\\textrm{d}t, \\end{aligned}$$</span></div></div><p>where <span>\\(\\{B^{\\omega }_\\zeta \\}_{\\zeta \\in \\mathbb {D}}\\)</span> are the reproducing kernels of the Bergman space <span>\\(A^{2}_{\\omega }\\)</span> induced by a radial weight <span>\\(\\omega \\)</span> in the unit disc <span>\\(\\mathbb {D}\\)</span>. We study the action of the operator <span>\\(C_{\\omega }\\)</span> on weighted Hardy spaces of analytic functions <span>\\(\\mathcal {H}_{\\gamma }\\)</span>, <span>\\(\\gamma >0\\)</span> and on general weighted Bergman spaces <span>\\(A^{2}_{\\mu }\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-024-00365-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalized Cesàro operator acting on Hilbert spaces of analytic functions\",\"authors\":\"Alejandro Mas, Noel Merchán, Elena de la Rosa\",\"doi\":\"10.1007/s43034-024-00365-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathbb {D}\\\\)</span> denote the unit disc in <span>\\\\(\\\\mathbb {C}\\\\)</span>. We define the generalized Cesàro operator as follows: </p><div><div><span>$$\\\\begin{aligned} C_{\\\\omega }(f)(z)=\\\\int _0^1 f(tz)\\\\left( \\\\frac{1}{z}\\\\int _0^z B^{\\\\omega }_t(u)\\\\,\\\\textrm{d}u\\\\right) \\\\,\\\\omega (t)\\\\textrm{d}t, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\{B^{\\\\omega }_\\\\zeta \\\\}_{\\\\zeta \\\\in \\\\mathbb {D}}\\\\)</span> are the reproducing kernels of the Bergman space <span>\\\\(A^{2}_{\\\\omega }\\\\)</span> induced by a radial weight <span>\\\\(\\\\omega \\\\)</span> in the unit disc <span>\\\\(\\\\mathbb {D}\\\\)</span>. We study the action of the operator <span>\\\\(C_{\\\\omega }\\\\)</span> on weighted Hardy spaces of analytic functions <span>\\\\(\\\\mathcal {H}_{\\\\gamma }\\\\)</span>, <span>\\\\(\\\\gamma >0\\\\)</span> and on general weighted Bergman spaces <span>\\\\(A^{2}_{\\\\mu }\\\\)</span>.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43034-024-00365-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00365-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00365-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
where \(\{B^{\omega }_\zeta \}_{\zeta \in \mathbb {D}}\) are the reproducing kernels of the Bergman space \(A^{2}_{\omega }\) induced by a radial weight \(\omega \) in the unit disc \(\mathbb {D}\). We study the action of the operator \(C_{\omega }\) on weighted Hardy spaces of analytic functions \(\mathcal {H}_{\gamma }\), \(\gamma >0\) and on general weighted Bergman spaces \(A^{2}_{\mu }\).
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.