亲和 RSK 对应和零级极值权重模块的晶体

Pub Date : 2024-05-11 DOI:10.1007/s00031-024-09857-0
Jae-Hoon Kwon, Hyunse Lee
{"title":"亲和 RSK 对应和零级极值权重模块的晶体","authors":"Jae-Hoon Kwon, Hyunse Lee","doi":"10.1007/s00031-024-09857-0","DOIUrl":null,"url":null,"abstract":"<p>We give an affine analogue of the Robinson-Schensted-Knuth (RSK) correspondence, which generalizes the affine Robinson-Schensted correspondence by Chmutov-Pylyavskyy-Yudovina. The affine RSK map sends a generalized affine permutation of period (<i>m</i>, <i>n</i>) to a pair of tableaux (<i>P</i>, <i>Q</i>) of the same shape, where <i>P</i> belongs to a tensor product of level one perfect Kirillov-Reshetikhin crystals of type <span>\\(A_{m-1}^{(1)}\\)</span>, and <i>Q</i> belongs to a crystal of extremal weight module of type <span>\\(A_{n-1}^{(1)}\\)</span> when <span>\\(m,n\\geqslant 2\\)</span>. We consider two affine crystal structures of types <span>\\(A_{m-1}^{(1)}\\)</span> and <span>\\(A_{n-1}^{(1)}\\)</span> on the set of generalized affine permutations, and show that the affine RSK map preserves the crystal equivalence. We also give a dual affine Robison-Schensted-Knuth correspondence.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affine RSK Correspondence and Crystals of Level Zero Extremal Weight Modules\",\"authors\":\"Jae-Hoon Kwon, Hyunse Lee\",\"doi\":\"10.1007/s00031-024-09857-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give an affine analogue of the Robinson-Schensted-Knuth (RSK) correspondence, which generalizes the affine Robinson-Schensted correspondence by Chmutov-Pylyavskyy-Yudovina. The affine RSK map sends a generalized affine permutation of period (<i>m</i>, <i>n</i>) to a pair of tableaux (<i>P</i>, <i>Q</i>) of the same shape, where <i>P</i> belongs to a tensor product of level one perfect Kirillov-Reshetikhin crystals of type <span>\\\\(A_{m-1}^{(1)}\\\\)</span>, and <i>Q</i> belongs to a crystal of extremal weight module of type <span>\\\\(A_{n-1}^{(1)}\\\\)</span> when <span>\\\\(m,n\\\\geqslant 2\\\\)</span>. We consider two affine crystal structures of types <span>\\\\(A_{m-1}^{(1)}\\\\)</span> and <span>\\\\(A_{n-1}^{(1)}\\\\)</span> on the set of generalized affine permutations, and show that the affine RSK map preserves the crystal equivalence. We also give a dual affine Robison-Schensted-Knuth correspondence.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09857-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09857-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了罗宾逊-申斯泰德-克努斯(RSK)对应关系的仿射类比,它概括了奇穆托夫-皮亚夫斯基-尤多维那(Chmutov-Pylyavskyy-Yudovina)的仿射罗宾逊-申斯泰德对应关系。仿射 RSK 映射将周期为(m, n)的广义仿射置换发送到一对相同形状的表格(P, Q),其中 P 属于 \(A_{m-1}^{(1)}\) 类型的一级完美基里洛夫-雷谢提金晶体的张量积,而 Q 属于 \(m,ngeqslant 2\) 时 \(A_{n-1}^{(1)}\) 类型的极值权重模块晶体。我们考虑了广义仿射置换集合上类型为 (A_{m-1}^{(1)}\)和 (A_{n-1}^{(1)}\)的两个仿射晶体结构,并证明仿射 RSK 映射保留了晶体等价性。我们还给出了对偶仿射罗比森-申斯特-克努斯对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Affine RSK Correspondence and Crystals of Level Zero Extremal Weight Modules

分享
查看原文
Affine RSK Correspondence and Crystals of Level Zero Extremal Weight Modules

We give an affine analogue of the Robinson-Schensted-Knuth (RSK) correspondence, which generalizes the affine Robinson-Schensted correspondence by Chmutov-Pylyavskyy-Yudovina. The affine RSK map sends a generalized affine permutation of period (mn) to a pair of tableaux (PQ) of the same shape, where P belongs to a tensor product of level one perfect Kirillov-Reshetikhin crystals of type \(A_{m-1}^{(1)}\), and Q belongs to a crystal of extremal weight module of type \(A_{n-1}^{(1)}\) when \(m,n\geqslant 2\). We consider two affine crystal structures of types \(A_{m-1}^{(1)}\) and \(A_{n-1}^{(1)}\) on the set of generalized affine permutations, and show that the affine RSK map preserves the crystal equivalence. We also give a dual affine Robison-Schensted-Knuth correspondence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信