Abdul Samad Khan, Muhammad Ishaq, Fuad A Awwad, Emad AA Ismail, Taza Gul
{"title":"在里加板存在的情况下,具有双重扩散的磁流体血液基混合纳米流体的流动,用于热优化和药物应用","authors":"Abdul Samad Khan, Muhammad Ishaq, Fuad A Awwad, Emad AA Ismail, Taza Gul","doi":"10.1177/16878132241244916","DOIUrl":null,"url":null,"abstract":"In a recent study, researchers investigated the flow behavior of Casson Hybrid nanofluids (HNFs) combination of single and multi-walled carbon nanotubes (SWCNTs), (MWCNTs) on a Riga plate for drug delivery applications. The study found that the Casson HNFs exhibited non-Newtonian behavior on the Riga plate, with the presence of nanoparticles causing an increase in viscosity and shear-thinning behavior. This rheological behavior is favorable for drug delivery applications as it improves the stability and dispersion of drug particles in the fluid. The similarity equations of the flow problem are easily tackled with the homotopy analysis method (HAM) built on fundamental homotopy mapping. In high-speed flows, Riga actuators are expected to achieve the requirements, since HNF is enhanced by modified Hartmann numbers. As the Eckert number, heat generation/absorption parameter, and thermal relaxation time parameter decrease the temperature, thermal transport increases. Furthermore, with the increments in paramount parameters, the skin friction coefficient and heat transfer rate are remarkably meliorated under higher modified Hartmann number. Furthermore, the study also found that the Casson Hybrid nanofluids showed enhanced heat transfer properties on the Riga plate, which is beneficial for localized drug delivery applications that require precise temperature control.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"87 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow of magnetohydrodynamic blood-based hybrid nanofluids with double diffusion in the presence of Riga plate for heat optimization and drug applications\",\"authors\":\"Abdul Samad Khan, Muhammad Ishaq, Fuad A Awwad, Emad AA Ismail, Taza Gul\",\"doi\":\"10.1177/16878132241244916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent study, researchers investigated the flow behavior of Casson Hybrid nanofluids (HNFs) combination of single and multi-walled carbon nanotubes (SWCNTs), (MWCNTs) on a Riga plate for drug delivery applications. The study found that the Casson HNFs exhibited non-Newtonian behavior on the Riga plate, with the presence of nanoparticles causing an increase in viscosity and shear-thinning behavior. This rheological behavior is favorable for drug delivery applications as it improves the stability and dispersion of drug particles in the fluid. The similarity equations of the flow problem are easily tackled with the homotopy analysis method (HAM) built on fundamental homotopy mapping. In high-speed flows, Riga actuators are expected to achieve the requirements, since HNF is enhanced by modified Hartmann numbers. As the Eckert number, heat generation/absorption parameter, and thermal relaxation time parameter decrease the temperature, thermal transport increases. Furthermore, with the increments in paramount parameters, the skin friction coefficient and heat transfer rate are remarkably meliorated under higher modified Hartmann number. Furthermore, the study also found that the Casson Hybrid nanofluids showed enhanced heat transfer properties on the Riga plate, which is beneficial for localized drug delivery applications that require precise temperature control.\",\"PeriodicalId\":7357,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132241244916\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241244916","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flow of magnetohydrodynamic blood-based hybrid nanofluids with double diffusion in the presence of Riga plate for heat optimization and drug applications
In a recent study, researchers investigated the flow behavior of Casson Hybrid nanofluids (HNFs) combination of single and multi-walled carbon nanotubes (SWCNTs), (MWCNTs) on a Riga plate for drug delivery applications. The study found that the Casson HNFs exhibited non-Newtonian behavior on the Riga plate, with the presence of nanoparticles causing an increase in viscosity and shear-thinning behavior. This rheological behavior is favorable for drug delivery applications as it improves the stability and dispersion of drug particles in the fluid. The similarity equations of the flow problem are easily tackled with the homotopy analysis method (HAM) built on fundamental homotopy mapping. In high-speed flows, Riga actuators are expected to achieve the requirements, since HNF is enhanced by modified Hartmann numbers. As the Eckert number, heat generation/absorption parameter, and thermal relaxation time parameter decrease the temperature, thermal transport increases. Furthermore, with the increments in paramount parameters, the skin friction coefficient and heat transfer rate are remarkably meliorated under higher modified Hartmann number. Furthermore, the study also found that the Casson Hybrid nanofluids showed enhanced heat transfer properties on the Riga plate, which is beneficial for localized drug delivery applications that require precise temperature control.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering