Johan Andersson, Ramūnas Garunkštis, Roma Kačinskaitė, Keita Nakai, Łukasz Pańkowski, Athanasios Sourmelidis, Rasa Steuding, Jörn Steuding, Saeree Wananiyakul
{"title":"关于短区间普遍性和指数移动的说明","authors":"Johan Andersson, Ramūnas Garunkštis, Roma Kačinskaitė, Keita Nakai, Łukasz Pańkowski, Athanasios Sourmelidis, Rasa Steuding, Jörn Steuding, Saeree Wananiyakul","doi":"10.1007/s10986-024-09631-5","DOIUrl":null,"url":null,"abstract":"<p>We improve a recent universality theorem for the Riemann zeta-function in short intervals due to Antanas Laurinčikas with respect to the length of these intervals. Moreover, we prove that the shifts can even have exponential growth. This research was initiated by two questions proposed by Laurinčikas in a problem session of a recent workshop on universality.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on universality in short intervals and exponential shifts\",\"authors\":\"Johan Andersson, Ramūnas Garunkštis, Roma Kačinskaitė, Keita Nakai, Łukasz Pańkowski, Athanasios Sourmelidis, Rasa Steuding, Jörn Steuding, Saeree Wananiyakul\",\"doi\":\"10.1007/s10986-024-09631-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We improve a recent universality theorem for the Riemann zeta-function in short intervals due to Antanas Laurinčikas with respect to the length of these intervals. Moreover, we prove that the shifts can even have exponential growth. This research was initiated by two questions proposed by Laurinčikas in a problem session of a recent workshop on universality.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-024-09631-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09631-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Notes on universality in short intervals and exponential shifts
We improve a recent universality theorem for the Riemann zeta-function in short intervals due to Antanas Laurinčikas with respect to the length of these intervals. Moreover, we prove that the shifts can even have exponential growth. This research was initiated by two questions proposed by Laurinčikas in a problem session of a recent workshop on universality.