{"title":"关于 $\\mathbf{Z}/p^n$ 的 $K$ 理论","authors":"Benjamin Antieau, Achim Krause, Thomas Nikolaus","doi":"arxiv-2405.04329","DOIUrl":null,"url":null,"abstract":"We give an explicit algebraic description, based on prismatic cohomology, of\nthe algebraic K-groups of rings of the form $O_K/I$ where $K$ is a p-adic field\nand $I$ is a non-trivial ideal in the ring of integers $O_K$; this class\nincludes the rings $\\mathbf{Z}/p^n$ where $p$ is a prime. The algebraic description allows us to describe a practical algorithm to\ncompute individual K-groups as well as to obtain several theoretical results:\nthe vanishing of the even K-groups in high degrees, the determination of the\norders of the odd K-groups in high degrees, and the degree of nilpotence of\n$v_1$ acting on the mod $p$ syntomic cohomology of $\\mathbf{Z}/p^n$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the $K$-theory of $\\\\mathbf{Z}/p^n$\",\"authors\":\"Benjamin Antieau, Achim Krause, Thomas Nikolaus\",\"doi\":\"arxiv-2405.04329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an explicit algebraic description, based on prismatic cohomology, of\\nthe algebraic K-groups of rings of the form $O_K/I$ where $K$ is a p-adic field\\nand $I$ is a non-trivial ideal in the ring of integers $O_K$; this class\\nincludes the rings $\\\\mathbf{Z}/p^n$ where $p$ is a prime. The algebraic description allows us to describe a practical algorithm to\\ncompute individual K-groups as well as to obtain several theoretical results:\\nthe vanishing of the even K-groups in high degrees, the determination of the\\norders of the odd K-groups in high degrees, and the degree of nilpotence of\\n$v_1$ acting on the mod $p$ syntomic cohomology of $\\\\mathbf{Z}/p^n$.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.04329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们基于棱柱同调,对形式为 $O_K/I$ 的环的代数 K 群给出了明确的代数描述,其中 $K$ 是 p-adic 场,$I$ 是整数环 $O_K$ 中的非三重理想;这类环包括 $\mathbf{Z}/p^n$ 环,其中 $p$ 是素数。通过代数描述,我们描述了计算单个 K 群的实用算法,并得到了几个理论结果:高度数中偶数 K 群的消失、高度数中奇数 K 群的阶的确定,以及作用于 $\mathbf{Z}/p^n$ 的 mod $p$ 合成同调上的 $v_1$ 的无穷度。
We give an explicit algebraic description, based on prismatic cohomology, of
the algebraic K-groups of rings of the form $O_K/I$ where $K$ is a p-adic field
and $I$ is a non-trivial ideal in the ring of integers $O_K$; this class
includes the rings $\mathbf{Z}/p^n$ where $p$ is a prime. The algebraic description allows us to describe a practical algorithm to
compute individual K-groups as well as to obtain several theoretical results:
the vanishing of the even K-groups in high degrees, the determination of the
orders of the odd K-groups in high degrees, and the degree of nilpotence of
$v_1$ acting on the mod $p$ syntomic cohomology of $\mathbf{Z}/p^n$.