两个平行圆柱体之间毛细管圆柱体的稳定性

IF 1.9 4区 数学 Q1 MATHEMATICS, APPLIED
Rafael López
{"title":"两个平行圆柱体之间毛细管圆柱体的稳定性","authors":"Rafael López","doi":"10.1137/23m1602139","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 3, Page 1039-1059, June 2024. <br/> Abstract. Consider a system of two parallel solid cylinders of equal radius made of a homogeneous material. We study the stability of a liquid bridge of circular cylinder shape between both solid cylinders. It is proved that if the circular cylinder liquid is concave, then it is stable. If the circular cylinder liquid is convex, we establish conditions on the radius of the cylinder liquid and the contact angle that ensure that long convex circular cylinders are not stable. Estimates for the length of these convex cylinders are given.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of a Capillary Circular Cylinder between Two Parallel Cylinders\",\"authors\":\"Rafael López\",\"doi\":\"10.1137/23m1602139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Mathematics, Volume 84, Issue 3, Page 1039-1059, June 2024. <br/> Abstract. Consider a system of two parallel solid cylinders of equal radius made of a homogeneous material. We study the stability of a liquid bridge of circular cylinder shape between both solid cylinders. It is proved that if the circular cylinder liquid is concave, then it is stable. If the circular cylinder liquid is convex, we establish conditions on the radius of the cylinder liquid and the contact angle that ensure that long convex circular cylinders are not stable. Estimates for the length of these convex cylinders are given.\",\"PeriodicalId\":51149,\"journal\":{\"name\":\"SIAM Journal on Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1602139\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1602139","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用数学杂志》第 84 卷第 3 期第 1039-1059 页,2024 年 6 月。 摘要考虑由均质材料制成的两个等半径平行实心圆柱体组成的系统。我们研究了两个实心圆柱之间圆柱形液桥的稳定性。研究证明,如果圆柱形液体是凹形的,那么它是稳定的。如果圆柱形液体是凸的,我们建立了圆柱形液体半径和接触角的条件,确保长凸圆柱形不稳定。给出了这些凸圆柱的长度估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of a Capillary Circular Cylinder between Two Parallel Cylinders
SIAM Journal on Applied Mathematics, Volume 84, Issue 3, Page 1039-1059, June 2024.
Abstract. Consider a system of two parallel solid cylinders of equal radius made of a homogeneous material. We study the stability of a liquid bridge of circular cylinder shape between both solid cylinders. It is proved that if the circular cylinder liquid is concave, then it is stable. If the circular cylinder liquid is convex, we establish conditions on the radius of the cylinder liquid and the contact angle that ensure that long convex circular cylinders are not stable. Estimates for the length of these convex cylinders are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
79
审稿时长
12 months
期刊介绍: SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信