Hamza Ennaji, Quentin Mérigot, Luca Nenna, Brendan Pass
{"title":"通过多边际优化运输实现稳健风险管理","authors":"Hamza Ennaji, Quentin Mérigot, Luca Nenna, Brendan Pass","doi":"10.1007/s10957-024-02438-x","DOIUrl":null,"url":null,"abstract":"<p>We study the problem of maximizing a spectral risk measure of a given output function which depends on several underlying variables, whose individual distributions are known but whose joint distribution is not. We establish and exploit an equivalence between this problem and a multi-marginal optimal transport problem. We use this reformulation to establish explicit, closed form solutions when the underlying variables are one dimensional, for a large class of output functions. For higher dimensional underlying variables, we identify conditions on the output function and marginal distributions under which solutions concentrate on graphs over the first variable and are unique, and, for general output functions, we find upper bounds on the dimension of the support of the solution. We also establish a stability result on the maximal value and maximizing joint distributions when the output function, marginal distributions and spectral function are perturbed; in addition, when the variables one dimensional, we show that the optimal value exhibits Lipschitz dependence on the marginal distributions for a certain class of output functions. Finally, we show that the equivalence to a multi-marginal optimal transport problem extends to maximal correlation measures of multi-dimensional risks; in this setting, we again establish conditions under which the solution concentrates on a graph over the first marginal.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Risk Management via Multi-marginal Optimal Transport\",\"authors\":\"Hamza Ennaji, Quentin Mérigot, Luca Nenna, Brendan Pass\",\"doi\":\"10.1007/s10957-024-02438-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the problem of maximizing a spectral risk measure of a given output function which depends on several underlying variables, whose individual distributions are known but whose joint distribution is not. We establish and exploit an equivalence between this problem and a multi-marginal optimal transport problem. We use this reformulation to establish explicit, closed form solutions when the underlying variables are one dimensional, for a large class of output functions. For higher dimensional underlying variables, we identify conditions on the output function and marginal distributions under which solutions concentrate on graphs over the first variable and are unique, and, for general output functions, we find upper bounds on the dimension of the support of the solution. We also establish a stability result on the maximal value and maximizing joint distributions when the output function, marginal distributions and spectral function are perturbed; in addition, when the variables one dimensional, we show that the optimal value exhibits Lipschitz dependence on the marginal distributions for a certain class of output functions. Finally, we show that the equivalence to a multi-marginal optimal transport problem extends to maximal correlation measures of multi-dimensional risks; in this setting, we again establish conditions under which the solution concentrates on a graph over the first marginal.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02438-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02438-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Robust Risk Management via Multi-marginal Optimal Transport
We study the problem of maximizing a spectral risk measure of a given output function which depends on several underlying variables, whose individual distributions are known but whose joint distribution is not. We establish and exploit an equivalence between this problem and a multi-marginal optimal transport problem. We use this reformulation to establish explicit, closed form solutions when the underlying variables are one dimensional, for a large class of output functions. For higher dimensional underlying variables, we identify conditions on the output function and marginal distributions under which solutions concentrate on graphs over the first variable and are unique, and, for general output functions, we find upper bounds on the dimension of the support of the solution. We also establish a stability result on the maximal value and maximizing joint distributions when the output function, marginal distributions and spectral function are perturbed; in addition, when the variables one dimensional, we show that the optimal value exhibits Lipschitz dependence on the marginal distributions for a certain class of output functions. Finally, we show that the equivalence to a multi-marginal optimal transport problem extends to maximal correlation measures of multi-dimensional risks; in this setting, we again establish conditions under which the solution concentrates on a graph over the first marginal.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.