基于 $\mathbb{R}^n$ 中 $Q_1$ 元素的积分平均插值算子的稳定性和收敛性

IF 1.9 4区 数学 Q1 MATHEMATICS
Yaru Liu,Yinnian He, Xinlong Feng
{"title":"基于 $\\mathbb{R}^n$ 中 $Q_1$ 元素的积分平均插值算子的稳定性和收敛性","authors":"Yaru Liu,Yinnian He, Xinlong Feng","doi":"10.4208/nmtma.oa-2023-0122","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an integral-averaged interpolation operator $I_\\tau$ in a bounded domain $Ω ⊂ \\mathbb{R}^n$ by using $Q_1$-element. The interpolation coefficient is\ndefined by the average integral value of the interpolation function $u$ on the interval\nformed by the midpoints of the neighboring elements. The operator $I_\\tau$ reduces the\nregularity requirement for the function $u$ while maintaining standard convergence.\nMoreover, it possesses an important property of $||I_\\tau u||_{0,Ω} ≤ ||u||_{0,Ω}.$ We conduct\nstability analysis and error estimation for the operator $I\\tau.$ Finally, we present several\nnumerical examples to test the efficiency and high accuracy of the operator","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":"10 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and Convergence of the Integral-Averaged Interpolation Operator Based on $Q_1$-element in $\\\\mathbb{R}^n$\",\"authors\":\"Yaru Liu,Yinnian He, Xinlong Feng\",\"doi\":\"10.4208/nmtma.oa-2023-0122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an integral-averaged interpolation operator $I_\\\\tau$ in a bounded domain $Ω ⊂ \\\\mathbb{R}^n$ by using $Q_1$-element. The interpolation coefficient is\\ndefined by the average integral value of the interpolation function $u$ on the interval\\nformed by the midpoints of the neighboring elements. The operator $I_\\\\tau$ reduces the\\nregularity requirement for the function $u$ while maintaining standard convergence.\\nMoreover, it possesses an important property of $||I_\\\\tau u||_{0,Ω} ≤ ||u||_{0,Ω}.$ We conduct\\nstability analysis and error estimation for the operator $I\\\\tau.$ Finally, we present several\\nnumerical examples to test the efficiency and high accuracy of the operator\",\"PeriodicalId\":51146,\"journal\":{\"name\":\"Numerical Mathematics-Theory Methods and Applications\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Mathematics-Theory Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/nmtma.oa-2023-0122\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/nmtma.oa-2023-0122","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过使用 $Q_1$ 元素,在有界域 $Ω ⊂ \mathbb{R}^n$ 中提出了一种积分平均插值算子 $I_\tau$。插值系数由插值函数 $u$ 在由相邻元素中点构成的区间上的平均积分值定义。算子 $I_\tau$ 在保持标准收敛性的同时,降低了对函数 $u$ 的正则性要求。此外,它还具有一个重要的性质,即 $||I_\tau u||_{0,Ω} ≤ ||u||_{0,Ω}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and Convergence of the Integral-Averaged Interpolation Operator Based on $Q_1$-element in $\mathbb{R}^n$
In this paper, we propose an integral-averaged interpolation operator $I_\tau$ in a bounded domain $Ω ⊂ \mathbb{R}^n$ by using $Q_1$-element. The interpolation coefficient is defined by the average integral value of the interpolation function $u$ on the interval formed by the midpoints of the neighboring elements. The operator $I_\tau$ reduces the regularity requirement for the function $u$ while maintaining standard convergence. Moreover, it possesses an important property of $||I_\tau u||_{0,Ω} ≤ ||u||_{0,Ω}.$ We conduct stability analysis and error estimation for the operator $I\tau.$ Finally, we present several numerical examples to test the efficiency and high accuracy of the operator
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
>12 weeks
期刊介绍: Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信