用于术中图像引导的超分辨率重建超光谱手术显微镜。

Ling Ma, Kelden Pruitt, Baowei Fei
{"title":"用于术中图像引导的超分辨率重建超光谱手术显微镜。","authors":"Ling Ma, Kelden Pruitt, Baowei Fei","doi":"10.1117/12.3008789","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperspectral imaging (HSI) is an emerging imaging modality in medical applications, especially for intraoperative image guidance. A surgical microscope improves surgeons' visualization with fine details during surgery. The combination of HSI and surgical microscope can provide a powerful tool for surgical guidance. However, to acquire high-resolution hyperspectral images, the long integration time and large image file size can be a burden for intraoperative applications. Super-resolution reconstruction allows acquisition of low-resolution hyperspectral images and generates high-resolution HSI. In this work, we developed a hyperspectral surgical microscope and employed our unsupervised super-resolution neural network, which generated high-resolution hyperspectral images with fine textures and spectral characteristics of tissues. The proposed method can reduce the acquisition time and save storage space taken up by hyperspectral images without compromising image quality, which will facilitate the adaptation of hyperspectral imaging technology in intraoperative image guidance.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12930 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093589/pdf/","citationCount":"0","resultStr":"{\"title\":\"A hyperspectral surgical microscope with super-resolution reconstruction for intraoperative image guidance.\",\"authors\":\"Ling Ma, Kelden Pruitt, Baowei Fei\",\"doi\":\"10.1117/12.3008789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperspectral imaging (HSI) is an emerging imaging modality in medical applications, especially for intraoperative image guidance. A surgical microscope improves surgeons' visualization with fine details during surgery. The combination of HSI and surgical microscope can provide a powerful tool for surgical guidance. However, to acquire high-resolution hyperspectral images, the long integration time and large image file size can be a burden for intraoperative applications. Super-resolution reconstruction allows acquisition of low-resolution hyperspectral images and generates high-resolution HSI. In this work, we developed a hyperspectral surgical microscope and employed our unsupervised super-resolution neural network, which generated high-resolution hyperspectral images with fine textures and spectral characteristics of tissues. The proposed method can reduce the acquisition time and save storage space taken up by hyperspectral images without compromising image quality, which will facilitate the adaptation of hyperspectral imaging technology in intraoperative image guidance.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"12930 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093589/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3008789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3008789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱成像(HSI)是一种新兴的医疗成像模式,尤其适用于术中图像引导。手术显微镜可改善外科医生在手术过程中对精细细节的观察。HSI 与手术显微镜的结合可为手术引导提供强大的工具。然而,要获取高分辨率的高光谱图像,较长的积分时间和较大的图像文件体积可能会成为术中应用的负担。超分辨率重构可以获取低分辨率的高光谱图像,并生成高分辨率的 HSI。在这项工作中,我们开发了一种高光谱手术显微镜,并采用了我们的无监督超分辨率神经网络,生成了具有组织精细纹理和光谱特征的高分辨率高光谱图像。所提出的方法可在不影响图像质量的前提下缩短高光谱图像的采集时间并节省存储空间,这将促进高光谱成像技术在术中图像引导中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hyperspectral surgical microscope with super-resolution reconstruction for intraoperative image guidance.

Hyperspectral imaging (HSI) is an emerging imaging modality in medical applications, especially for intraoperative image guidance. A surgical microscope improves surgeons' visualization with fine details during surgery. The combination of HSI and surgical microscope can provide a powerful tool for surgical guidance. However, to acquire high-resolution hyperspectral images, the long integration time and large image file size can be a burden for intraoperative applications. Super-resolution reconstruction allows acquisition of low-resolution hyperspectral images and generates high-resolution HSI. In this work, we developed a hyperspectral surgical microscope and employed our unsupervised super-resolution neural network, which generated high-resolution hyperspectral images with fine textures and spectral characteristics of tissues. The proposed method can reduce the acquisition time and save storage space taken up by hyperspectral images without compromising image quality, which will facilitate the adaptation of hyperspectral imaging technology in intraoperative image guidance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信