{"title":"用于术中图像引导的超分辨率重建超光谱手术显微镜。","authors":"Ling Ma, Kelden Pruitt, Baowei Fei","doi":"10.1117/12.3008789","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperspectral imaging (HSI) is an emerging imaging modality in medical applications, especially for intraoperative image guidance. A surgical microscope improves surgeons' visualization with fine details during surgery. The combination of HSI and surgical microscope can provide a powerful tool for surgical guidance. However, to acquire high-resolution hyperspectral images, the long integration time and large image file size can be a burden for intraoperative applications. Super-resolution reconstruction allows acquisition of low-resolution hyperspectral images and generates high-resolution HSI. In this work, we developed a hyperspectral surgical microscope and employed our unsupervised super-resolution neural network, which generated high-resolution hyperspectral images with fine textures and spectral characteristics of tissues. The proposed method can reduce the acquisition time and save storage space taken up by hyperspectral images without compromising image quality, which will facilitate the adaptation of hyperspectral imaging technology in intraoperative image guidance.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12930 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093589/pdf/","citationCount":"0","resultStr":"{\"title\":\"A hyperspectral surgical microscope with super-resolution reconstruction for intraoperative image guidance.\",\"authors\":\"Ling Ma, Kelden Pruitt, Baowei Fei\",\"doi\":\"10.1117/12.3008789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperspectral imaging (HSI) is an emerging imaging modality in medical applications, especially for intraoperative image guidance. A surgical microscope improves surgeons' visualization with fine details during surgery. The combination of HSI and surgical microscope can provide a powerful tool for surgical guidance. However, to acquire high-resolution hyperspectral images, the long integration time and large image file size can be a burden for intraoperative applications. Super-resolution reconstruction allows acquisition of low-resolution hyperspectral images and generates high-resolution HSI. In this work, we developed a hyperspectral surgical microscope and employed our unsupervised super-resolution neural network, which generated high-resolution hyperspectral images with fine textures and spectral characteristics of tissues. The proposed method can reduce the acquisition time and save storage space taken up by hyperspectral images without compromising image quality, which will facilitate the adaptation of hyperspectral imaging technology in intraoperative image guidance.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"12930 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093589/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3008789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3008789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A hyperspectral surgical microscope with super-resolution reconstruction for intraoperative image guidance.
Hyperspectral imaging (HSI) is an emerging imaging modality in medical applications, especially for intraoperative image guidance. A surgical microscope improves surgeons' visualization with fine details during surgery. The combination of HSI and surgical microscope can provide a powerful tool for surgical guidance. However, to acquire high-resolution hyperspectral images, the long integration time and large image file size can be a burden for intraoperative applications. Super-resolution reconstruction allows acquisition of low-resolution hyperspectral images and generates high-resolution HSI. In this work, we developed a hyperspectral surgical microscope and employed our unsupervised super-resolution neural network, which generated high-resolution hyperspectral images with fine textures and spectral characteristics of tissues. The proposed method can reduce the acquisition time and save storage space taken up by hyperspectral images without compromising image quality, which will facilitate the adaptation of hyperspectral imaging technology in intraoperative image guidance.