Chuei Wuei Leong, Kar Ming Yee, Tracy Ann Rani, Kheng Jinm Lau, Shahnun Ahmad, Atiqah Amran, Farah Wahidah Mohd Hassan, Naveen Kumar
{"title":"辛伐他汀和依折麦布固定剂量复方片剂的药代动力学和生物等效性:一项针对健康志愿者的随机、交叉、开放标签研究","authors":"Chuei Wuei Leong, Kar Ming Yee, Tracy Ann Rani, Kheng Jinm Lau, Shahnun Ahmad, Atiqah Amran, Farah Wahidah Mohd Hassan, Naveen Kumar","doi":"10.1002/cpdd.1411","DOIUrl":null,"url":null,"abstract":"<p>The current study aimed to evaluate the bioequivalence of a new generic combination of simvastatin and ezetimibe with the reference formulation. An open-label, randomized, 3-period, 3-sequence, crossover study, including 60 healthy volunteers, was implemented. Participants received the test and reference formulation, each containing 20 mg of simvastatin and 10 mg of ezetimibe as a single-dose tablet, separated by a minimum of 2-week washout periods. Blood samples were collected for 20 time points from predose to 72 hours after the dose. The total ezetimibe assay was carried out using a validated liquid chromatography-tandem mass spectrometry, while unconjugated ezetimibe, simvastatin, and simvastatin β-hydroxy acid determination was done via a validated ultra-performance liquid chromatography-tandem mass spectrometry. Each assay was preceded by a liquid-liquid extraction step. The pharmacokinetic parameters were derived using noncompartmental analysis and then compared between the reference and test formulations via a multivariate analysis of variance. No statistical difference was found in under the concentration-time curve from time 0 to the last quantifiable concentration and maximum concentration of unconjugated ezetimibe, total ezetimibe, and simvastatin between the reference and test formulations. The 90% confidence intervals of unconjugated ezetimibe, total ezetimibe, and simvastatin natural log-transformed under the concentration-time curve from time 0 to the last quantifiable concentration, and maximum concentration were in the range of 80%-125% as per the bioequivalence acceptance criteria. Therefore, the test formulation was bioequivalent to the reference formulation.</p>","PeriodicalId":10495,"journal":{"name":"Clinical Pharmacology in Drug Development","volume":"13 8","pages":"938-946"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacokinetics and Bioequivalence of Fixed-Dose Combination of Simvastatin and Ezetimibe Tablets: A Randomized, Crossover, Open-Label Study in Healthy Volunteers\",\"authors\":\"Chuei Wuei Leong, Kar Ming Yee, Tracy Ann Rani, Kheng Jinm Lau, Shahnun Ahmad, Atiqah Amran, Farah Wahidah Mohd Hassan, Naveen Kumar\",\"doi\":\"10.1002/cpdd.1411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The current study aimed to evaluate the bioequivalence of a new generic combination of simvastatin and ezetimibe with the reference formulation. An open-label, randomized, 3-period, 3-sequence, crossover study, including 60 healthy volunteers, was implemented. Participants received the test and reference formulation, each containing 20 mg of simvastatin and 10 mg of ezetimibe as a single-dose tablet, separated by a minimum of 2-week washout periods. Blood samples were collected for 20 time points from predose to 72 hours after the dose. The total ezetimibe assay was carried out using a validated liquid chromatography-tandem mass spectrometry, while unconjugated ezetimibe, simvastatin, and simvastatin β-hydroxy acid determination was done via a validated ultra-performance liquid chromatography-tandem mass spectrometry. Each assay was preceded by a liquid-liquid extraction step. The pharmacokinetic parameters were derived using noncompartmental analysis and then compared between the reference and test formulations via a multivariate analysis of variance. No statistical difference was found in under the concentration-time curve from time 0 to the last quantifiable concentration and maximum concentration of unconjugated ezetimibe, total ezetimibe, and simvastatin between the reference and test formulations. The 90% confidence intervals of unconjugated ezetimibe, total ezetimibe, and simvastatin natural log-transformed under the concentration-time curve from time 0 to the last quantifiable concentration, and maximum concentration were in the range of 80%-125% as per the bioequivalence acceptance criteria. Therefore, the test formulation was bioequivalent to the reference formulation.</p>\",\"PeriodicalId\":10495,\"journal\":{\"name\":\"Clinical Pharmacology in Drug Development\",\"volume\":\"13 8\",\"pages\":\"938-946\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Pharmacology in Drug Development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpdd.1411\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology in Drug Development","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpdd.1411","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Pharmacokinetics and Bioequivalence of Fixed-Dose Combination of Simvastatin and Ezetimibe Tablets: A Randomized, Crossover, Open-Label Study in Healthy Volunteers
The current study aimed to evaluate the bioequivalence of a new generic combination of simvastatin and ezetimibe with the reference formulation. An open-label, randomized, 3-period, 3-sequence, crossover study, including 60 healthy volunteers, was implemented. Participants received the test and reference formulation, each containing 20 mg of simvastatin and 10 mg of ezetimibe as a single-dose tablet, separated by a minimum of 2-week washout periods. Blood samples were collected for 20 time points from predose to 72 hours after the dose. The total ezetimibe assay was carried out using a validated liquid chromatography-tandem mass spectrometry, while unconjugated ezetimibe, simvastatin, and simvastatin β-hydroxy acid determination was done via a validated ultra-performance liquid chromatography-tandem mass spectrometry. Each assay was preceded by a liquid-liquid extraction step. The pharmacokinetic parameters were derived using noncompartmental analysis and then compared between the reference and test formulations via a multivariate analysis of variance. No statistical difference was found in under the concentration-time curve from time 0 to the last quantifiable concentration and maximum concentration of unconjugated ezetimibe, total ezetimibe, and simvastatin between the reference and test formulations. The 90% confidence intervals of unconjugated ezetimibe, total ezetimibe, and simvastatin natural log-transformed under the concentration-time curve from time 0 to the last quantifiable concentration, and maximum concentration were in the range of 80%-125% as per the bioequivalence acceptance criteria. Therefore, the test formulation was bioequivalent to the reference formulation.
期刊介绍:
Clinical Pharmacology in Drug Development is an international, peer-reviewed, online publication focused on publishing high-quality clinical pharmacology studies in drug development which are primarily (but not exclusively) performed in early development phases in healthy subjects.