非视距动态成像的即插即用算法

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Juntian Ye, Yu Hong, Xiongfei Su, Xin Yuan, Feihu Xu
{"title":"非视距动态成像的即插即用算法","authors":"Juntian Ye, Yu Hong, Xiongfei Su, Xin Yuan, Feihu Xu","doi":"10.1145/3665139","DOIUrl":null,"url":null,"abstract":"<p>Non-line-of-sight (NLOS) imaging has the ability to recover 3D images of scenes outside the direct line of sight, which is of growing interest for diverse applications. Despite the remarkable progress, NLOS imaging of dynamic objects is still challenging. It requires a large amount of multibounce photons for the reconstruction of single frame data. To overcome this obstacle, we develop a computational framework for dynamic time-of-flight NLOS imaging based on plug-and-play (PnP) algorithms. By combining imaging forward model with the deep denoising network from the computer vision community, we show a 4 frames-per-second (fps) 3D NLOS video recovery (128 × 128 × 512) in post processing. Our method leverages the temporal similarity among adjacent frames and incorporates sparse priors and frequency filtering. This enables higher-quality reconstructions for complex scenes. Extensive experiments are conducted to verify the superior performance of our proposed algorithm both through simulations and real data.</p>","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"32 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plug-and-Play Algorithms for Dynamic Non-line-of-sight Imaging\",\"authors\":\"Juntian Ye, Yu Hong, Xiongfei Su, Xin Yuan, Feihu Xu\",\"doi\":\"10.1145/3665139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-line-of-sight (NLOS) imaging has the ability to recover 3D images of scenes outside the direct line of sight, which is of growing interest for diverse applications. Despite the remarkable progress, NLOS imaging of dynamic objects is still challenging. It requires a large amount of multibounce photons for the reconstruction of single frame data. To overcome this obstacle, we develop a computational framework for dynamic time-of-flight NLOS imaging based on plug-and-play (PnP) algorithms. By combining imaging forward model with the deep denoising network from the computer vision community, we show a 4 frames-per-second (fps) 3D NLOS video recovery (128 × 128 × 512) in post processing. Our method leverages the temporal similarity among adjacent frames and incorporates sparse priors and frequency filtering. This enables higher-quality reconstructions for complex scenes. Extensive experiments are conducted to verify the superior performance of our proposed algorithm both through simulations and real data.</p>\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3665139\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665139","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

非视线(NLOS)成像能够恢复直接视线以外场景的三维图像,在各种应用中越来越受到关注。尽管取得了令人瞩目的进展,但动态物体的非视线成像仍具有挑战性。它需要大量的多弹光子来重建单帧数据。为了克服这一障碍,我们开发了一种基于即插即用(PnP)算法的动态飞行时间 NLOS 成像计算框架。通过将成像前向模型与计算机视觉领域的深度去噪网络相结合,我们在后期处理中展示了每秒 4 帧(fps)的 3D NLOS 视频恢复(128 × 128 × 512)。我们的方法利用了相邻帧之间的时间相似性,并结合了稀疏先验和频率滤波。这使得复杂场景的重建质量更高。我们进行了广泛的实验,通过模拟和真实数据验证了我们提出的算法的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plug-and-Play Algorithms for Dynamic Non-line-of-sight Imaging

Non-line-of-sight (NLOS) imaging has the ability to recover 3D images of scenes outside the direct line of sight, which is of growing interest for diverse applications. Despite the remarkable progress, NLOS imaging of dynamic objects is still challenging. It requires a large amount of multibounce photons for the reconstruction of single frame data. To overcome this obstacle, we develop a computational framework for dynamic time-of-flight NLOS imaging based on plug-and-play (PnP) algorithms. By combining imaging forward model with the deep denoising network from the computer vision community, we show a 4 frames-per-second (fps) 3D NLOS video recovery (128 × 128 × 512) in post processing. Our method leverages the temporal similarity among adjacent frames and incorporates sparse priors and frequency filtering. This enables higher-quality reconstructions for complex scenes. Extensive experiments are conducted to verify the superior performance of our proposed algorithm both through simulations and real data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信