Dongyue Li , Chengshuang Wu , Lu Xie , Yong Zhang , Peter K. Liaw , Wenrui Wang
{"title":"通过微结构工程改善 Fe50Mn30Co10Cr10 高熵合金的拉伸和冲击性能","authors":"Dongyue Li , Chengshuang Wu , Lu Xie , Yong Zhang , Peter K. Liaw , Wenrui Wang","doi":"10.1016/j.intermet.2024.108314","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the Fe50Mn30Co10Cr10 high entropy alloy (HEA), featuring a dual-phase structure with face-centered cubic (FCC) and hexagonal close-packed (HCP) phases, in both cast and forged states. The cast samples exhibited an average tensile strength of 675.9 MPa and an elongation at break of 34 %, while the forged samples showed superior properties with a strength of 821.0 MPa and 50 % elongation. Impact tests at room temperature, 200 K, and 77 K revealed that forged samples consistently had higher impact energy (144 J, 119 J, and 109 J, respectively) compared to cast samples (99 J, 80 J, and 66 J). This research underscores the significant influence of the dual-phase structure and fabrication process on the mechanical and impact properties of the Fe50Mn30Co10Cr10 system HEAs.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving tensile and impact properties of Fe50Mn30Co10Cr10 high entropy alloy via microstructural engineering\",\"authors\":\"Dongyue Li , Chengshuang Wu , Lu Xie , Yong Zhang , Peter K. Liaw , Wenrui Wang\",\"doi\":\"10.1016/j.intermet.2024.108314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the Fe50Mn30Co10Cr10 high entropy alloy (HEA), featuring a dual-phase structure with face-centered cubic (FCC) and hexagonal close-packed (HCP) phases, in both cast and forged states. The cast samples exhibited an average tensile strength of 675.9 MPa and an elongation at break of 34 %, while the forged samples showed superior properties with a strength of 821.0 MPa and 50 % elongation. Impact tests at room temperature, 200 K, and 77 K revealed that forged samples consistently had higher impact energy (144 J, 119 J, and 109 J, respectively) compared to cast samples (99 J, 80 J, and 66 J). This research underscores the significant influence of the dual-phase structure and fabrication process on the mechanical and impact properties of the Fe50Mn30Co10Cr10 system HEAs.</p></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096697952400133X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096697952400133X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究调查了铁50锰30钴10铬10高熵合金(HEA)的铸造和锻造状态,其特点是具有面心立方(FCC)和六方紧密堆积(HCP)相的双相结构。铸造样品的平均拉伸强度为 675.9 兆帕,断裂伸长率为 34%,而锻造样品的拉伸强度为 821.0 兆帕,断裂伸长率为 50%。在室温、200 K 和 77 K 下进行的冲击测试表明,锻造样品的冲击能量(分别为 144 J、119 J 和 109 J)始终高于铸造样品(分别为 99 J、80 J 和 66 J)。这项研究强调了双相结构和制造工艺对 Fe50Mn30Co10Cr10 系统 HEA 的机械和冲击性能的重要影响。
Improving tensile and impact properties of Fe50Mn30Co10Cr10 high entropy alloy via microstructural engineering
This study investigates the Fe50Mn30Co10Cr10 high entropy alloy (HEA), featuring a dual-phase structure with face-centered cubic (FCC) and hexagonal close-packed (HCP) phases, in both cast and forged states. The cast samples exhibited an average tensile strength of 675.9 MPa and an elongation at break of 34 %, while the forged samples showed superior properties with a strength of 821.0 MPa and 50 % elongation. Impact tests at room temperature, 200 K, and 77 K revealed that forged samples consistently had higher impact energy (144 J, 119 J, and 109 J, respectively) compared to cast samples (99 J, 80 J, and 66 J). This research underscores the significant influence of the dual-phase structure and fabrication process on the mechanical and impact properties of the Fe50Mn30Co10Cr10 system HEAs.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.