Quilt-1M:用于组织病理学的百万图像-文本对。

Wisdom O Ikezogwo, Mehmet S Seyfioglu, Fatemeh Ghezloo, Dylan Geva, Fatwir S Mohammed, Pavan K Anand, Ranjay Krishna, Linda G Shapiro
{"title":"Quilt-1M:用于组织病理学的百万图像-文本对。","authors":"Wisdom O Ikezogwo, Mehmet S Seyfioglu, Fatemeh Ghezloo, Dylan Geva, Fatwir S Mohammed, Pavan K Anand, Ranjay Krishna, Linda G Shapiro","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recent accelerations in multi-modal applications have been made possible with the plethora of image and text data available online. However, the scarcity of analogous data in the medical field, specifically in histopathology, has halted comparable progress. To enable similar representation learning for histopathology, we turn to YouTube, an untapped resource of videos, offering 1,087 hours of valuable educational histopathology videos from expert clinicians. From YouTube, we curate Quilt: a large-scale vision-language dataset consisting of 768,826 image and text pairs. Quilt was automatically curated using a mixture of models, including large language models, handcrafted algorithms, human knowledge databases, and automatic speech recognition. In comparison, the most comprehensive datasets curated for histopathology amass only around 200K samples. We combine Quilt with datasets from other sources, including Twitter, research papers, and the internet in general, to create an even larger dataset: Quilt-1M, with 1M paired image-text samples, marking it as the largest vision-language histopathology dataset to date. We demonstrate the value of Quilt-1M by fine-tuning a pre-trained CLIP model. Our model outperforms state-of-the-art models on both zero-shot and linear probing tasks for classifying new histopathology images across 13 diverse patch-level datasets of 8 different sub-pathologies and cross-modal retrieval tasks.</p>","PeriodicalId":72099,"journal":{"name":"Advances in neural information processing systems","volume":"36 DB1","pages":"37995-38017"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090501/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quilt-1M: One Million Image-Text Pairs for Histopathology.\",\"authors\":\"Wisdom O Ikezogwo, Mehmet S Seyfioglu, Fatemeh Ghezloo, Dylan Geva, Fatwir S Mohammed, Pavan K Anand, Ranjay Krishna, Linda G Shapiro\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent accelerations in multi-modal applications have been made possible with the plethora of image and text data available online. However, the scarcity of analogous data in the medical field, specifically in histopathology, has halted comparable progress. To enable similar representation learning for histopathology, we turn to YouTube, an untapped resource of videos, offering 1,087 hours of valuable educational histopathology videos from expert clinicians. From YouTube, we curate Quilt: a large-scale vision-language dataset consisting of 768,826 image and text pairs. Quilt was automatically curated using a mixture of models, including large language models, handcrafted algorithms, human knowledge databases, and automatic speech recognition. In comparison, the most comprehensive datasets curated for histopathology amass only around 200K samples. We combine Quilt with datasets from other sources, including Twitter, research papers, and the internet in general, to create an even larger dataset: Quilt-1M, with 1M paired image-text samples, marking it as the largest vision-language histopathology dataset to date. We demonstrate the value of Quilt-1M by fine-tuning a pre-trained CLIP model. Our model outperforms state-of-the-art models on both zero-shot and linear probing tasks for classifying new histopathology images across 13 diverse patch-level datasets of 8 different sub-pathologies and cross-modal retrieval tasks.</p>\",\"PeriodicalId\":72099,\"journal\":{\"name\":\"Advances in neural information processing systems\",\"volume\":\"36 DB1\",\"pages\":\"37995-38017\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090501/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neural information processing systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neural information processing systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,随着大量图像和文本数据的在线提供,多模态应用得以加速发展。然而,在医学领域,特别是组织病理学领域,类似数据的匮乏阻碍了类似技术的发展。为了对组织病理学进行类似的表征学习,我们求助于 YouTube,这是一个尚未开发的视频资源,它提供了 1,087 小时由临床专家提供的宝贵的组织病理学教育视频。我们从 YouTube 上整理出了 Quilt:一个由 768,826 对图像和文本组成的大规模视觉语言数据集。Quilt 是使用多种模型自动策划的,包括大型语言模型、手工算法、人类知识数据库和自动语音识别。相比之下,最全面的组织病理学数据集仅有约 20 万个样本。我们将 Quilt 与 Twitter、研究论文和互联网等其他来源的数据集结合起来,创建了一个更大的数据集:Quilt-1M 拥有 100 万个配对图像-文本样本,是迄今为止最大的视觉语言组织病理学数据集。我们通过微调预先训练好的 CLIP 模型来证明 Quilt-1M 的价值。我们的模型在 8 种不同子病理学的 13 个不同斑块级数据集和跨模态检索任务中,在对新组织病理学图像进行分类时,在零点扫描和线性探测任务上都优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quilt-1M: One Million Image-Text Pairs for Histopathology.

Recent accelerations in multi-modal applications have been made possible with the plethora of image and text data available online. However, the scarcity of analogous data in the medical field, specifically in histopathology, has halted comparable progress. To enable similar representation learning for histopathology, we turn to YouTube, an untapped resource of videos, offering 1,087 hours of valuable educational histopathology videos from expert clinicians. From YouTube, we curate Quilt: a large-scale vision-language dataset consisting of 768,826 image and text pairs. Quilt was automatically curated using a mixture of models, including large language models, handcrafted algorithms, human knowledge databases, and automatic speech recognition. In comparison, the most comprehensive datasets curated for histopathology amass only around 200K samples. We combine Quilt with datasets from other sources, including Twitter, research papers, and the internet in general, to create an even larger dataset: Quilt-1M, with 1M paired image-text samples, marking it as the largest vision-language histopathology dataset to date. We demonstrate the value of Quilt-1M by fine-tuning a pre-trained CLIP model. Our model outperforms state-of-the-art models on both zero-shot and linear probing tasks for classifying new histopathology images across 13 diverse patch-level datasets of 8 different sub-pathologies and cross-modal retrieval tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信