Ainkaran Santhirasekaram, Mathias Winkler, Andrea Rockall, Ben Glocker
{"title":"使用具有离散表示的变换器进行稳健的前列腺疾病分类。","authors":"Ainkaran Santhirasekaram, Mathias Winkler, Andrea Rockall, Ben Glocker","doi":"10.1007/s11548-024-03153-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Automated prostate disease classification on multi-parametric MRI has recently shown promising results with the use of convolutional neural networks (CNNs). The vision transformer (ViT) is a convolutional free architecture which only exploits the self-attention mechanism and has surpassed CNNs in some natural imaging classification tasks. However, these models are not very robust to textural shifts in the input space. In MRI, we often have to deal with textural shift arising from varying acquisition protocols. Here, we focus on the ability of models to generalise well to new magnet strengths for MRI.</p><p><strong>Method: </strong>We propose a new framework to improve the robustness of vision transformer-based models for disease classification by constructing discrete representations of the data using vector quantisation. We sample a subset of the discrete representations to form the input into a transformer-based model. We use cross-attention in our transformer model to combine the discrete representations of T2-weighted and apparent diffusion coefficient (ADC) images.</p><p><strong>Results: </strong>We analyse the robustness of our model by training on a 1.5 T scanner and test on a 3 T scanner and vice versa. Our approach achieves SOTA performance for classification of lesions on prostate MRI and outperforms various other CNN and transformer-based models in terms of robustness to domain shift and perturbations in the input space.</p><p><strong>Conclusion: </strong>We develop a method to improve the robustness of transformer-based disease classification of prostate lesions on MRI using discrete representations of the T2-weighted and ADC images.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"11-20"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759462/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust prostate disease classification using transformers with discrete representations.\",\"authors\":\"Ainkaran Santhirasekaram, Mathias Winkler, Andrea Rockall, Ben Glocker\",\"doi\":\"10.1007/s11548-024-03153-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Automated prostate disease classification on multi-parametric MRI has recently shown promising results with the use of convolutional neural networks (CNNs). The vision transformer (ViT) is a convolutional free architecture which only exploits the self-attention mechanism and has surpassed CNNs in some natural imaging classification tasks. However, these models are not very robust to textural shifts in the input space. In MRI, we often have to deal with textural shift arising from varying acquisition protocols. Here, we focus on the ability of models to generalise well to new magnet strengths for MRI.</p><p><strong>Method: </strong>We propose a new framework to improve the robustness of vision transformer-based models for disease classification by constructing discrete representations of the data using vector quantisation. We sample a subset of the discrete representations to form the input into a transformer-based model. We use cross-attention in our transformer model to combine the discrete representations of T2-weighted and apparent diffusion coefficient (ADC) images.</p><p><strong>Results: </strong>We analyse the robustness of our model by training on a 1.5 T scanner and test on a 3 T scanner and vice versa. Our approach achieves SOTA performance for classification of lesions on prostate MRI and outperforms various other CNN and transformer-based models in terms of robustness to domain shift and perturbations in the input space.</p><p><strong>Conclusion: </strong>We develop a method to improve the robustness of transformer-based disease classification of prostate lesions on MRI using discrete representations of the T2-weighted and ADC images.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"11-20\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759462/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-024-03153-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03153-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
目的:最近,使用卷积神经网络(CNN)对多参数磁共振成像进行前列腺疾病自动分类取得了可喜的成果。视觉转换器(ViT)是一种卷积自由架构,它只利用了自注意机制,在一些自然成像分类任务中已经超越了 CNN。然而,这些模型对输入空间的纹理变化并不十分稳健。在核磁共振成像中,我们经常需要处理因不同采集协议而产生的纹理偏移。在此,我们将重点关注模型对 MRI 新磁铁强度的良好泛化能力:方法:我们提出了一个新框架,通过使用向量量化来构建数据的离散表示,从而提高基于视觉变换器的疾病分类模型的鲁棒性。我们对离散表示的一个子集进行采样,以形成基于转换器的模型的输入。我们在变压器模型中使用交叉注意,将 T2 加权图像和表观扩散系数(ADC)图像的离散表示结合起来:我们通过在 1.5 T 扫描仪上进行训练和在 3 T 扫描仪上进行测试来分析模型的鲁棒性,反之亦然。我们的方法在前列腺磁共振成像病变分类方面实现了 SOTA 性能,在对输入空间的域偏移和扰动的鲁棒性方面优于其他各种基于 CNN 和变压器的模型:我们开发了一种方法,利用 T2 加权和 ADC 图像的离散表示,提高了基于变压器的前列腺 MRI 病变分类的鲁棒性。
Robust prostate disease classification using transformers with discrete representations.
Purpose: Automated prostate disease classification on multi-parametric MRI has recently shown promising results with the use of convolutional neural networks (CNNs). The vision transformer (ViT) is a convolutional free architecture which only exploits the self-attention mechanism and has surpassed CNNs in some natural imaging classification tasks. However, these models are not very robust to textural shifts in the input space. In MRI, we often have to deal with textural shift arising from varying acquisition protocols. Here, we focus on the ability of models to generalise well to new magnet strengths for MRI.
Method: We propose a new framework to improve the robustness of vision transformer-based models for disease classification by constructing discrete representations of the data using vector quantisation. We sample a subset of the discrete representations to form the input into a transformer-based model. We use cross-attention in our transformer model to combine the discrete representations of T2-weighted and apparent diffusion coefficient (ADC) images.
Results: We analyse the robustness of our model by training on a 1.5 T scanner and test on a 3 T scanner and vice versa. Our approach achieves SOTA performance for classification of lesions on prostate MRI and outperforms various other CNN and transformer-based models in terms of robustness to domain shift and perturbations in the input space.
Conclusion: We develop a method to improve the robustness of transformer-based disease classification of prostate lesions on MRI using discrete representations of the T2-weighted and ADC images.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.