{"title":"流体与结构相互作用研究:分析不同位置颈动脉狭窄的严重程度及其对各种血液动力学生物标志物的影响","authors":"Kshitij Shakya, Shubhajit Roy Chowdhury","doi":"10.1016/j.euromechflu.2024.04.006","DOIUrl":null,"url":null,"abstract":"<div><p>The study on arterial stenosis has gained rapid interest among researchers in the last decade because of its chronic consequences. Several researchers have tried to investigate stenosis and plaque progression in the carotid artery with different simulation models. In this study, a realistic 3-D geometry of the carotid artery has been used to analyze the effect of varying degrees of stenosis present at different locations of the carotid artery on various hemodynamic parameters. An extensive range of stenosis degrees, starting from a healthy artery(0 %stenosis) to 10%, 30%, 50%, 75%, and 90% stenosis, have been studied. These degrees of stenosis were planted at different locations of the artery grown simultaneously. The whole study was done under the realm of Fluid–Structure Interaction multiphysics. The change in velocity profiles at the areas of stenosis has been found along with the wall shear stress and arterial displacement. The magnitude of velocity and wall shear stress in the case of multiple stenosis locations has been found to be dependent on each other. The presence or absence of one stenosis affects the other, and given the regular and irregular patterns of the velocity profile, wall shear stress, and displacement, their inclusion in blood flow simulation studies having multiple stenoses should be considered.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"106 ","pages":"Pages 227-237"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fluid–structure interaction study to analyze the severity of carotid artery stenosis at different locations and its effect on various hemodynamic biomarkers\",\"authors\":\"Kshitij Shakya, Shubhajit Roy Chowdhury\",\"doi\":\"10.1016/j.euromechflu.2024.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study on arterial stenosis has gained rapid interest among researchers in the last decade because of its chronic consequences. Several researchers have tried to investigate stenosis and plaque progression in the carotid artery with different simulation models. In this study, a realistic 3-D geometry of the carotid artery has been used to analyze the effect of varying degrees of stenosis present at different locations of the carotid artery on various hemodynamic parameters. An extensive range of stenosis degrees, starting from a healthy artery(0 %stenosis) to 10%, 30%, 50%, 75%, and 90% stenosis, have been studied. These degrees of stenosis were planted at different locations of the artery grown simultaneously. The whole study was done under the realm of Fluid–Structure Interaction multiphysics. The change in velocity profiles at the areas of stenosis has been found along with the wall shear stress and arterial displacement. The magnitude of velocity and wall shear stress in the case of multiple stenosis locations has been found to be dependent on each other. The presence or absence of one stenosis affects the other, and given the regular and irregular patterns of the velocity profile, wall shear stress, and displacement, their inclusion in blood flow simulation studies having multiple stenoses should be considered.</p></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"106 \",\"pages\":\"Pages 227-237\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S099775462400058X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S099775462400058X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
A fluid–structure interaction study to analyze the severity of carotid artery stenosis at different locations and its effect on various hemodynamic biomarkers
The study on arterial stenosis has gained rapid interest among researchers in the last decade because of its chronic consequences. Several researchers have tried to investigate stenosis and plaque progression in the carotid artery with different simulation models. In this study, a realistic 3-D geometry of the carotid artery has been used to analyze the effect of varying degrees of stenosis present at different locations of the carotid artery on various hemodynamic parameters. An extensive range of stenosis degrees, starting from a healthy artery(0 %stenosis) to 10%, 30%, 50%, 75%, and 90% stenosis, have been studied. These degrees of stenosis were planted at different locations of the artery grown simultaneously. The whole study was done under the realm of Fluid–Structure Interaction multiphysics. The change in velocity profiles at the areas of stenosis has been found along with the wall shear stress and arterial displacement. The magnitude of velocity and wall shear stress in the case of multiple stenosis locations has been found to be dependent on each other. The presence or absence of one stenosis affects the other, and given the regular and irregular patterns of the velocity profile, wall shear stress, and displacement, their inclusion in blood flow simulation studies having multiple stenoses should be considered.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.