统一域中的 A∞ 条件、ε-近似器和 Varopoulos 扩展。

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2024-01-01 Epub Date: 2024-05-09 DOI:10.1007/s12220-024-01666-x
S Bortz, B Poggi, O Tapiola, X Tolsa
{"title":"统一域中的 A∞ 条件、ε-近似器和 Varopoulos 扩展。","authors":"S Bortz, B Poggi, O Tapiola, X Tolsa","doi":"10.1007/s12220-024-01666-x","DOIUrl":null,"url":null,"abstract":"<p><p>Suppose that <math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow></math>, <math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math>, is a uniform domain with <i>n</i>-Ahlfors regular boundary and <i>L</i> is a (not necessarily symmetric) divergence form elliptic, real, bounded operator in <math><mi>Ω</mi></math>. We show that the corresponding elliptic measure <math><msub><mi>ω</mi><mi>L</mi></msub></math> is quantitatively absolutely continuous with respect to surface measure of <math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math> in the sense that <math><mrow><msub><mi>ω</mi><mi>L</mi></msub><mo>∈</mo><msub><mi>A</mi><mi>∞</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math> if and only if any bounded solution <i>u</i> to <math><mrow><mi>L</mi><mi>u</mi><mo>=</mo><mn>0</mn></mrow></math> in <math><mi>Ω</mi></math> is <math><mi>ε</mi></math>-approximable for any <math><mrow><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math>. By <math><mi>ε</mi></math>-approximability of <i>u</i> we mean that there exists a function <math><mrow><mi>Φ</mi><mo>=</mo><msup><mi>Φ</mi><mi>ε</mi></msup></mrow></math> such that <math><mrow><msub><mrow><mo>‖</mo><mi>u</mi><mo>-</mo><mi>Φ</mi><mo>‖</mo></mrow><mrow><msup><mi>L</mi><mi>∞</mi></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>≤</mo><mi>ε</mi><msub><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mi>L</mi><mi>∞</mi></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub></mrow></math> and the measure <math><msub><mover><mi>μ</mi><mo>~</mo></mover><mi>Φ</mi></msub></math> with <math><mrow><mi>d</mi><mover><mi>μ</mi><mo>~</mo></mover><mo>=</mo><mrow><mo>|</mo><mi>∇</mi><mi>Φ</mi><mrow><mo>(</mo><mi>Y</mi><mo>)</mo></mrow><mo>|</mo></mrow><mspace></mspace><mi>d</mi><mi>Y</mi></mrow></math> is a Carleson measure with <math><msup><mi>L</mi><mi>∞</mi></msup></math> control over the Carleson norm. As a consequence of this approximability result, we show that boundary <math><mrow><mspace></mspace><mtext>BMO</mtext><mspace></mspace></mrow></math> functions with compact support can have Varopoulos-type extensions even in some sets with unrectifiable boundaries, that is, smooth extensions that converge non-tangentially back to the original data and that satisfy <math><msup><mi>L</mi><mn>1</mn></msup></math>-type Carleson measure estimates with <math><mrow><mspace></mspace><mtext>BMO</mtext><mspace></mspace></mrow></math> control over the Carleson norm. Our result complements the recent work of Hofmann and the third named author who showed the existence of these types of extensions in the presence of a quantitative rectifiability hypothesis.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"34 7","pages":"218"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087277/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">The <ns0:math><ns0:msub><ns0:mi>A</ns0:mi><ns0:mi>∞</ns0:mi></ns0:msub></ns0:math> Condition, <ns0:math><ns0:mi>ε</ns0:mi></ns0:math>-Approximators, and Varopoulos Extensions in Uniform Domains.\",\"authors\":\"S Bortz, B Poggi, O Tapiola, X Tolsa\",\"doi\":\"10.1007/s12220-024-01666-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Suppose that <math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow></math>, <math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math>, is a uniform domain with <i>n</i>-Ahlfors regular boundary and <i>L</i> is a (not necessarily symmetric) divergence form elliptic, real, bounded operator in <math><mi>Ω</mi></math>. We show that the corresponding elliptic measure <math><msub><mi>ω</mi><mi>L</mi></msub></math> is quantitatively absolutely continuous with respect to surface measure of <math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math> in the sense that <math><mrow><msub><mi>ω</mi><mi>L</mi></msub><mo>∈</mo><msub><mi>A</mi><mi>∞</mi></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math> if and only if any bounded solution <i>u</i> to <math><mrow><mi>L</mi><mi>u</mi><mo>=</mo><mn>0</mn></mrow></math> in <math><mi>Ω</mi></math> is <math><mi>ε</mi></math>-approximable for any <math><mrow><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math>. By <math><mi>ε</mi></math>-approximability of <i>u</i> we mean that there exists a function <math><mrow><mi>Φ</mi><mo>=</mo><msup><mi>Φ</mi><mi>ε</mi></msup></mrow></math> such that <math><mrow><msub><mrow><mo>‖</mo><mi>u</mi><mo>-</mo><mi>Φ</mi><mo>‖</mo></mrow><mrow><msup><mi>L</mi><mi>∞</mi></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>≤</mo><mi>ε</mi><msub><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mi>L</mi><mi>∞</mi></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub></mrow></math> and the measure <math><msub><mover><mi>μ</mi><mo>~</mo></mover><mi>Φ</mi></msub></math> with <math><mrow><mi>d</mi><mover><mi>μ</mi><mo>~</mo></mover><mo>=</mo><mrow><mo>|</mo><mi>∇</mi><mi>Φ</mi><mrow><mo>(</mo><mi>Y</mi><mo>)</mo></mrow><mo>|</mo></mrow><mspace></mspace><mi>d</mi><mi>Y</mi></mrow></math> is a Carleson measure with <math><msup><mi>L</mi><mi>∞</mi></msup></math> control over the Carleson norm. As a consequence of this approximability result, we show that boundary <math><mrow><mspace></mspace><mtext>BMO</mtext><mspace></mspace></mrow></math> functions with compact support can have Varopoulos-type extensions even in some sets with unrectifiable boundaries, that is, smooth extensions that converge non-tangentially back to the original data and that satisfy <math><msup><mi>L</mi><mn>1</mn></msup></math>-type Carleson measure estimates with <math><mrow><mspace></mspace><mtext>BMO</mtext><mspace></mspace></mrow></math> control over the Carleson norm. Our result complements the recent work of Hofmann and the third named author who showed the existence of these types of extensions in the presence of a quantitative rectifiability hypothesis.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":\"34 7\",\"pages\":\"218\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087277/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01666-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-024-01666-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设ω⊂Rn+1,n≥1,是一个具有 n-Ahlfors 正则边界的均匀域,L 是ω中一个(不一定对称)发散形式的椭圆、实、有界算子。我们证明,当且仅当ω中任意ε∈(0,1)的Lu=0的有界解u是ε-近似的时候,相应的椭圆度量ωL相对于∂ω的表面度量是定量绝对连续的,即ω∈A∞(σ)。我们所说的 u 的 ε-approximability 是指存在一个函数Φ=Φε,使得‖u-Φ‖L∞(Ω)≤ε‖u‖L∞(Ω),并且 dμ~=|∇Φ(Y)|dY 的度量 μ~Φ 是一个对卡里尔逊规范具有 L∞ 控制的卡里尔逊度量。由于这一近似性结果,我们证明了具有紧凑支持的边界 BMO 函数即使在某些具有不可修正边界的集合中也可以具有 Varopoulos 型扩展,即平滑扩展,这些扩展非切线地收敛回原始数据,并且满足 L1 型卡勒森度量估计,对卡勒森规范具有 BMO 控制。我们的结果补充了霍夫曼和第三位作者的最新研究成果,他们证明了在存在定量可修正性假设的情况下,这些类型的扩展是存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The A Condition, ε-Approximators, and Varopoulos Extensions in Uniform Domains.

Suppose that ΩRn+1, n1, is a uniform domain with n-Ahlfors regular boundary and L is a (not necessarily symmetric) divergence form elliptic, real, bounded operator in Ω. We show that the corresponding elliptic measure ωL is quantitatively absolutely continuous with respect to surface measure of Ω in the sense that ωLA(σ) if and only if any bounded solution u to Lu=0 in Ω is ε-approximable for any ε(0,1). By ε-approximability of u we mean that there exists a function Φ=Φε such that u-ΦL(Ω)εuL(Ω) and the measure μ~Φ with dμ~=|Φ(Y)|dY is a Carleson measure with L control over the Carleson norm. As a consequence of this approximability result, we show that boundary BMO functions with compact support can have Varopoulos-type extensions even in some sets with unrectifiable boundaries, that is, smooth extensions that converge non-tangentially back to the original data and that satisfy L1-type Carleson measure estimates with BMO control over the Carleson norm. Our result complements the recent work of Hofmann and the third named author who showed the existence of these types of extensions in the presence of a quantitative rectifiability hypothesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信