单细胞转录组分析揭示了非小细胞肺癌中性粒细胞的异质性。

IF 3.2 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yunzhen Wang, Ziyi Zhu, Raojun Luo, Wenwen Chen
{"title":"单细胞转录组分析揭示了非小细胞肺癌中性粒细胞的异质性。","authors":"Yunzhen Wang,&nbsp;Ziyi Zhu,&nbsp;Raojun Luo,&nbsp;Wenwen Chen","doi":"10.1002/jgm.3690","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Lung cancer stands out as a highly perilous malignant tumor with severe implications for human health. There has been a growing interest in neutrophils as a result of their role in promoting cancer in recent years. Thus, the present study aimed to investigate the heterogeneity of neutrophils in non-small cell lung cancer (NSCLC).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Single-cell RNA sequencing of tumor-associated neutrophils (TANs) and polymorphonuclear neutrophils sourced from the Gene Expression Omnibus database was analyzed. Moreover, cell–cell communication, differentiation trajectories and transcription factor analyses were performed.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Neutrophils were found to be closely associated with macrophages. Four major types of TANs were identified: a transitional subcluster that migrated from blood to tumor microenvironment (TAN-0), an inflammatory subcluster (TAN-1), a subpopulation that displayed a distinctive transcriptional signature (TAN-2) and a final differentiation state that promoted tumor formation (TAN-3). Meanwhile, TAN-3 displayed a marked increase in glycolytic activity. Finally, transcription factors were analyzed to uncover distinct TAN cluster-specific regulons.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The discovery of the dynamic characteristics of TANs in the present study is anticipated to contribute to yielding a better understanding of the tumor microenvironment and advancing the treatment of NSCLC.</p>\n </section>\n </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell transcriptome analysis reveals heterogeneity of neutrophils in non-small cell lung cancer\",\"authors\":\"Yunzhen Wang,&nbsp;Ziyi Zhu,&nbsp;Raojun Luo,&nbsp;Wenwen Chen\",\"doi\":\"10.1002/jgm.3690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Lung cancer stands out as a highly perilous malignant tumor with severe implications for human health. There has been a growing interest in neutrophils as a result of their role in promoting cancer in recent years. Thus, the present study aimed to investigate the heterogeneity of neutrophils in non-small cell lung cancer (NSCLC).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Single-cell RNA sequencing of tumor-associated neutrophils (TANs) and polymorphonuclear neutrophils sourced from the Gene Expression Omnibus database was analyzed. Moreover, cell–cell communication, differentiation trajectories and transcription factor analyses were performed.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Neutrophils were found to be closely associated with macrophages. Four major types of TANs were identified: a transitional subcluster that migrated from blood to tumor microenvironment (TAN-0), an inflammatory subcluster (TAN-1), a subpopulation that displayed a distinctive transcriptional signature (TAN-2) and a final differentiation state that promoted tumor formation (TAN-3). Meanwhile, TAN-3 displayed a marked increase in glycolytic activity. Finally, transcription factors were analyzed to uncover distinct TAN cluster-specific regulons.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The discovery of the dynamic characteristics of TANs in the present study is anticipated to contribute to yielding a better understanding of the tumor microenvironment and advancing the treatment of NSCLC.</p>\\n </section>\\n </div>\",\"PeriodicalId\":56122,\"journal\":{\"name\":\"Journal of Gene Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Gene Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3690\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3690","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:肺癌是一种高度危险的恶性肿瘤,对人类健康具有严重影响。近年来,由于中性粒细胞在促进癌症发生中的作用,人们对中性粒细胞的兴趣日益浓厚。因此,本研究旨在探讨非小细胞肺癌(NSCLC)中中性粒细胞的异质性:方法:分析了来自基因表达总库(Gene Expression Omnibus)的肿瘤相关中性粒细胞(TANs)和多形核中性粒细胞的单细胞RNA测序。此外,还进行了细胞间通讯、分化轨迹和转录因子分析:结果:发现中性粒细胞与巨噬细胞密切相关。结果:研究发现中性粒细胞与巨噬细胞密切相关,并确定了四种主要的 TANs 类型:从血液迁移到肿瘤微环境的过渡亚群(TAN-0)、炎症亚群(TAN-1)、显示独特转录特征的亚群(TAN-2)和促进肿瘤形成的最终分化状态(TAN-3)。同时,TAN-3 显示出明显的糖酵解活性增加。最后,通过分析转录因子发现了不同的TAN集群特异性调控子:结论:本研究发现了TANs的动态特征,预计这将有助于更好地了解肿瘤微环境并推进NSCLC的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Single-cell transcriptome analysis reveals heterogeneity of neutrophils in non-small cell lung cancer

Single-cell transcriptome analysis reveals heterogeneity of neutrophils in non-small cell lung cancer

Background

Lung cancer stands out as a highly perilous malignant tumor with severe implications for human health. There has been a growing interest in neutrophils as a result of their role in promoting cancer in recent years. Thus, the present study aimed to investigate the heterogeneity of neutrophils in non-small cell lung cancer (NSCLC).

Methods

Single-cell RNA sequencing of tumor-associated neutrophils (TANs) and polymorphonuclear neutrophils sourced from the Gene Expression Omnibus database was analyzed. Moreover, cell–cell communication, differentiation trajectories and transcription factor analyses were performed.

Results

Neutrophils were found to be closely associated with macrophages. Four major types of TANs were identified: a transitional subcluster that migrated from blood to tumor microenvironment (TAN-0), an inflammatory subcluster (TAN-1), a subpopulation that displayed a distinctive transcriptional signature (TAN-2) and a final differentiation state that promoted tumor formation (TAN-3). Meanwhile, TAN-3 displayed a marked increase in glycolytic activity. Finally, transcription factors were analyzed to uncover distinct TAN cluster-specific regulons.

Conclusions

The discovery of the dynamic characteristics of TANs in the present study is anticipated to contribute to yielding a better understanding of the tumor microenvironment and advancing the treatment of NSCLC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Gene Medicine
Journal of Gene Medicine 医学-生物工程与应用微生物
CiteScore
6.40
自引率
0.00%
发文量
80
审稿时长
6-12 weeks
期刊介绍: The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies. Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials. Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信