豆豆蛋白酶可裂解 ADC 连接体和酪蛋白酶可裂解 ADC 连接体的活性、溶酶体稳定性和功效比较。

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Xenobiotica Pub Date : 2024-08-01 Epub Date: 2024-09-27 DOI:10.1080/00498254.2024.2352051
Meghan E Gray, Karina M Zielinski, Fanny Xu, Kayla K Elder, Steven J McKay, Victor T Ojo, Samantha R Benjamin, Aiman A Yaseen, Tracy A Brooks, L Nathan Tumey
{"title":"豆豆蛋白酶可裂解 ADC 连接体和酪蛋白酶可裂解 ADC 连接体的活性、溶酶体稳定性和功效比较。","authors":"Meghan E Gray, Karina M Zielinski, Fanny Xu, Kayla K Elder, Steven J McKay, Victor T Ojo, Samantha R Benjamin, Aiman A Yaseen, Tracy A Brooks, L Nathan Tumey","doi":"10.1080/00498254.2024.2352051","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past two decades, antibody-drug conjugates (ADCs) have emerged as a highly effective drug delivery technology. ADCs utilise a monoclonal antibody, a chemical linker, and a therapeutic payload to selectively deliver highly potent pharmaceutical agents to specific cell types.Challenges such as premature linker cleavage and clearance due to linker hydrophobicity have adversely impacted the stability and safety of ADCs. While there are various solutions to these challenges, our team has focused on replacement of hydrophobic ValCit linkers (cleaved by CatB) with Asn-containing linkers that are cleaved by lysosomal legumain.Legumain is abundantly present in lysosomes and is known to play a role in tumour microenvironment dynamics. Herein, we directly compare the lysosomal cleavage, cytotoxicity, plasma stability, and efficacy of a traditional cathepsin-cleavable ADC to a matched Asn-containing legumain-cleavable ADC.We demonstrate that Asn-containing linker sequences are specifically cleaved by lysosomal legumain and that Asn-linked MMAE ADCs are broadly active against a variety of tumours, even those with low legumain expression. Finally, we show that AsnAsn-linked ADCs exhibit comparable or improved efficacy to traditional ValCit-linked ADCs. Our study paves the way for replacement of the traditional ValCit linker technology with more hydrophilic Asn-containing peptide linker sequences.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"458-468"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436314/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comparison of the activity, lysosomal stability, and efficacy of legumain-cleavable and cathepsin-cleavable ADC linkers.\",\"authors\":\"Meghan E Gray, Karina M Zielinski, Fanny Xu, Kayla K Elder, Steven J McKay, Victor T Ojo, Samantha R Benjamin, Aiman A Yaseen, Tracy A Brooks, L Nathan Tumey\",\"doi\":\"10.1080/00498254.2024.2352051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past two decades, antibody-drug conjugates (ADCs) have emerged as a highly effective drug delivery technology. ADCs utilise a monoclonal antibody, a chemical linker, and a therapeutic payload to selectively deliver highly potent pharmaceutical agents to specific cell types.Challenges such as premature linker cleavage and clearance due to linker hydrophobicity have adversely impacted the stability and safety of ADCs. While there are various solutions to these challenges, our team has focused on replacement of hydrophobic ValCit linkers (cleaved by CatB) with Asn-containing linkers that are cleaved by lysosomal legumain.Legumain is abundantly present in lysosomes and is known to play a role in tumour microenvironment dynamics. Herein, we directly compare the lysosomal cleavage, cytotoxicity, plasma stability, and efficacy of a traditional cathepsin-cleavable ADC to a matched Asn-containing legumain-cleavable ADC.We demonstrate that Asn-containing linker sequences are specifically cleaved by lysosomal legumain and that Asn-linked MMAE ADCs are broadly active against a variety of tumours, even those with low legumain expression. Finally, we show that AsnAsn-linked ADCs exhibit comparable or improved efficacy to traditional ValCit-linked ADCs. Our study paves the way for replacement of the traditional ValCit linker technology with more hydrophilic Asn-containing peptide linker sequences.</p>\",\"PeriodicalId\":23812,\"journal\":{\"name\":\"Xenobiotica\",\"volume\":\" \",\"pages\":\"458-468\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436314/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Xenobiotica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00498254.2024.2352051\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2352051","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

1.在过去二十年里,抗体药物结合体(ADC)已成为一种高效的给药技术。ADC 利用单克隆抗体、化学连接体和治疗载荷,选择性地向特定细胞类型输送高效药物。 2. 连接体疏水性导致的连接体过早裂解和清除等挑战对 ADC 的稳定性和安全性产生了不利影响。针对这些挑战有多种解决方案,但我们团队的研究重点是将疏水性 ValCit 连接体(由 CatB 裂解)替换为由溶酶体 legumain 裂解的含 Asn 连接体3。 Legumain 大量存在于溶酶体中,在肿瘤微环境动态中发挥作用。在这里,我们直接比较了传统的可被酪蛋白酶裂解的 ADC 与匹配的含 Asn 的可被豆豆蛋白酶裂解的 ADC 的溶酶体裂解、细胞毒性、血浆稳定性和疗效。我们证明,含 Asn 的连接序列能被溶酶体豆豆蛋白酶特异性地裂解,而且含 Asn 的 MMAE ADC 对多种肿瘤具有广泛的活性,即使是豆豆蛋白酶表达量低的肿瘤也不例外。最后,我们发现 AsnAsn 连接的 ADC 与传统的 ValCit 连接的 ADC 相比,疗效相当或更好。我们的研究为用亲水性更强的含 Asn 肽连接序列取代传统的 ValCit 连接技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of the activity, lysosomal stability, and efficacy of legumain-cleavable and cathepsin-cleavable ADC linkers.

Over the past two decades, antibody-drug conjugates (ADCs) have emerged as a highly effective drug delivery technology. ADCs utilise a monoclonal antibody, a chemical linker, and a therapeutic payload to selectively deliver highly potent pharmaceutical agents to specific cell types.Challenges such as premature linker cleavage and clearance due to linker hydrophobicity have adversely impacted the stability and safety of ADCs. While there are various solutions to these challenges, our team has focused on replacement of hydrophobic ValCit linkers (cleaved by CatB) with Asn-containing linkers that are cleaved by lysosomal legumain.Legumain is abundantly present in lysosomes and is known to play a role in tumour microenvironment dynamics. Herein, we directly compare the lysosomal cleavage, cytotoxicity, plasma stability, and efficacy of a traditional cathepsin-cleavable ADC to a matched Asn-containing legumain-cleavable ADC.We demonstrate that Asn-containing linker sequences are specifically cleaved by lysosomal legumain and that Asn-linked MMAE ADCs are broadly active against a variety of tumours, even those with low legumain expression. Finally, we show that AsnAsn-linked ADCs exhibit comparable or improved efficacy to traditional ValCit-linked ADCs. Our study paves the way for replacement of the traditional ValCit linker technology with more hydrophilic Asn-containing peptide linker sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Xenobiotica
Xenobiotica 医学-毒理学
CiteScore
3.80
自引率
5.60%
发文量
96
审稿时长
2 months
期刊介绍: Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信