Erika Rasnick Manning, Qing Duan, Stuart Taylor, Sarah Ray, Alexandra M S Corley, Joseph Michael, Ryan Gillette, Ndidi Unaka, David Hartley, Andrew F Beck, Cole Brokamp
{"title":"开发多模式地理标志物管道,以评估社会、经济和环境因素对儿科健康结果的影响。","authors":"Erika Rasnick Manning, Qing Duan, Stuart Taylor, Sarah Ray, Alexandra M S Corley, Joseph Michael, Ryan Gillette, Ndidi Unaka, David Hartley, Andrew F Beck, Cole Brokamp","doi":"10.1093/jamia/ocae093","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We sought to create a computational pipeline for attaching geomarkers, contextual or geographic measures that influence or predict health, to electronic health records at scale, including developing a tool for matching addresses to parcels to assess the impact of housing characteristics on pediatric health.</p><p><strong>Materials and methods: </strong>We created a geomarker pipeline to link residential addresses from hospital admissions at Cincinnati Children's Hospital Medical Center (CCHMC) between July 2016 and June 2022 to place-based data. Linkage methods included by date of admission, geocoding to census tract, street range geocoding, and probabilistic address matching. We assessed 4 methods for probabilistic address matching.</p><p><strong>Results: </strong>We characterized 124 244 hospitalizations experienced by 69 842 children admitted to CCHMC. Of the 55 684 hospitalizations with residential addresses in Hamilton County, Ohio, all were matched to 7 temporal geomarkers, 97% were matched to 79 census tract-level geomarkers and 13 point-level geomarkers, and 75% were matched to 16 parcel-level geomarkers. Parcel-level geomarkers were linked using our exact address matching tool developed using the best-performing linkage method.</p><p><strong>Discussion: </strong>Our multimodal geomarker pipeline provides a reproducible framework for attaching place-based data to health data while maintaining data privacy. This framework can be applied to other populations and in other regions. We also created a tool for address matching that democratizes parcel-level data to advance precision population health efforts.</p><p><strong>Conclusion: </strong>We created an open framework for multimodal geomarker assessment by harmonizing and linking a set of over 100 geomarkers to hospitalization data, enabling assessment of links between geomarkers and hospital admissions.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"1471-1478"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187418/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a multimodal geomarker pipeline to assess the impact of social, economic, and environmental factors on pediatric health outcomes.\",\"authors\":\"Erika Rasnick Manning, Qing Duan, Stuart Taylor, Sarah Ray, Alexandra M S Corley, Joseph Michael, Ryan Gillette, Ndidi Unaka, David Hartley, Andrew F Beck, Cole Brokamp\",\"doi\":\"10.1093/jamia/ocae093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>We sought to create a computational pipeline for attaching geomarkers, contextual or geographic measures that influence or predict health, to electronic health records at scale, including developing a tool for matching addresses to parcels to assess the impact of housing characteristics on pediatric health.</p><p><strong>Materials and methods: </strong>We created a geomarker pipeline to link residential addresses from hospital admissions at Cincinnati Children's Hospital Medical Center (CCHMC) between July 2016 and June 2022 to place-based data. Linkage methods included by date of admission, geocoding to census tract, street range geocoding, and probabilistic address matching. We assessed 4 methods for probabilistic address matching.</p><p><strong>Results: </strong>We characterized 124 244 hospitalizations experienced by 69 842 children admitted to CCHMC. Of the 55 684 hospitalizations with residential addresses in Hamilton County, Ohio, all were matched to 7 temporal geomarkers, 97% were matched to 79 census tract-level geomarkers and 13 point-level geomarkers, and 75% were matched to 16 parcel-level geomarkers. Parcel-level geomarkers were linked using our exact address matching tool developed using the best-performing linkage method.</p><p><strong>Discussion: </strong>Our multimodal geomarker pipeline provides a reproducible framework for attaching place-based data to health data while maintaining data privacy. This framework can be applied to other populations and in other regions. We also created a tool for address matching that democratizes parcel-level data to advance precision population health efforts.</p><p><strong>Conclusion: </strong>We created an open framework for multimodal geomarker assessment by harmonizing and linking a set of over 100 geomarkers to hospitalization data, enabling assessment of links between geomarkers and hospital admissions.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":\" \",\"pages\":\"1471-1478\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187418/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocae093\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae093","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Development of a multimodal geomarker pipeline to assess the impact of social, economic, and environmental factors on pediatric health outcomes.
Objectives: We sought to create a computational pipeline for attaching geomarkers, contextual or geographic measures that influence or predict health, to electronic health records at scale, including developing a tool for matching addresses to parcels to assess the impact of housing characteristics on pediatric health.
Materials and methods: We created a geomarker pipeline to link residential addresses from hospital admissions at Cincinnati Children's Hospital Medical Center (CCHMC) between July 2016 and June 2022 to place-based data. Linkage methods included by date of admission, geocoding to census tract, street range geocoding, and probabilistic address matching. We assessed 4 methods for probabilistic address matching.
Results: We characterized 124 244 hospitalizations experienced by 69 842 children admitted to CCHMC. Of the 55 684 hospitalizations with residential addresses in Hamilton County, Ohio, all were matched to 7 temporal geomarkers, 97% were matched to 79 census tract-level geomarkers and 13 point-level geomarkers, and 75% were matched to 16 parcel-level geomarkers. Parcel-level geomarkers were linked using our exact address matching tool developed using the best-performing linkage method.
Discussion: Our multimodal geomarker pipeline provides a reproducible framework for attaching place-based data to health data while maintaining data privacy. This framework can be applied to other populations and in other regions. We also created a tool for address matching that democratizes parcel-level data to advance precision population health efforts.
Conclusion: We created an open framework for multimodal geomarker assessment by harmonizing and linking a set of over 100 geomarkers to hospitalization data, enabling assessment of links between geomarkers and hospital admissions.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.