Mir Amir Hossein Hosseini, Ali Akbar Alizadeh, Ali Shayanfar
{"title":"根据结构参数和理化特性预测药物口服后的首过代谢过程","authors":"Mir Amir Hossein Hosseini, Ali Akbar Alizadeh, Ali Shayanfar","doi":"10.1007/s13318-024-00892-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>The oral first-pass metabolism is a crucial factor that plays a key role in a drug's pharmacokinetic profile. Prediction of the oral first-pass metabolism based on chemical structural parameters can be useful in the drug-design process. Developing an orally administered drug with an acceptable pharmacokinetic profile is necessary to reduce the cost and time associated with evaluating the extent of the first-pass metabolism of a candidate compound in preclinical studies. The aim of this study is to estimate the first-pass metabolism of an orally administered drug.</p><p><strong>Methods: </strong>A set of compounds with reported first-pass metabolism data were collected. Moreover, human intestinal absorption percentage and oral bioavailability data were extracted from the literature to propose a classification system that split the drugs up based on their first-pass metabolism extents. Various structural parameters were calculated for each compound. The relations of the structural and physicochemical values of each compound to the class the compound belongs to were obtained using logistic regression.</p><p><strong>Results: </strong>Initial analysis showed that compounds with logD<sub>7.4</sub> > 1 or a rugosity factor of > 1.5 are more likely to have high first-pass metabolism. Four different models that can predict the oral first-pass metabolism with acceptable error were introduced. The overall accuracies of the models were in the range of 72% (for models with simple descriptors) to 78% (for models with complex descriptors). Although the models with simple descriptors have lower accuracies compared to complex models, they are more interpretable and easier for researchers to utilize.</p><p><strong>Conclusion: </strong>A novel classification of drugs based on the extent of the oral first-pass metabolism was introduced, and mechanistic models were developed to assign candidate compounds to the appropriate proposed classes.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the First-Pass Metabolism of a Drug After Oral Intake Based on Structural Parameters and Physicochemical Properties.\",\"authors\":\"Mir Amir Hossein Hosseini, Ali Akbar Alizadeh, Ali Shayanfar\",\"doi\":\"10.1007/s13318-024-00892-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>The oral first-pass metabolism is a crucial factor that plays a key role in a drug's pharmacokinetic profile. Prediction of the oral first-pass metabolism based on chemical structural parameters can be useful in the drug-design process. Developing an orally administered drug with an acceptable pharmacokinetic profile is necessary to reduce the cost and time associated with evaluating the extent of the first-pass metabolism of a candidate compound in preclinical studies. The aim of this study is to estimate the first-pass metabolism of an orally administered drug.</p><p><strong>Methods: </strong>A set of compounds with reported first-pass metabolism data were collected. Moreover, human intestinal absorption percentage and oral bioavailability data were extracted from the literature to propose a classification system that split the drugs up based on their first-pass metabolism extents. Various structural parameters were calculated for each compound. The relations of the structural and physicochemical values of each compound to the class the compound belongs to were obtained using logistic regression.</p><p><strong>Results: </strong>Initial analysis showed that compounds with logD<sub>7.4</sub> > 1 or a rugosity factor of > 1.5 are more likely to have high first-pass metabolism. Four different models that can predict the oral first-pass metabolism with acceptable error were introduced. The overall accuracies of the models were in the range of 72% (for models with simple descriptors) to 78% (for models with complex descriptors). Although the models with simple descriptors have lower accuracies compared to complex models, they are more interpretable and easier for researchers to utilize.</p><p><strong>Conclusion: </strong>A novel classification of drugs based on the extent of the oral first-pass metabolism was introduced, and mechanistic models were developed to assign candidate compounds to the appropriate proposed classes.</p>\",\"PeriodicalId\":11939,\"journal\":{\"name\":\"European Journal of Drug Metabolism and Pharmacokinetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Drug Metabolism and Pharmacokinetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13318-024-00892-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13318-024-00892-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Prediction of the First-Pass Metabolism of a Drug After Oral Intake Based on Structural Parameters and Physicochemical Properties.
Background and objective: The oral first-pass metabolism is a crucial factor that plays a key role in a drug's pharmacokinetic profile. Prediction of the oral first-pass metabolism based on chemical structural parameters can be useful in the drug-design process. Developing an orally administered drug with an acceptable pharmacokinetic profile is necessary to reduce the cost and time associated with evaluating the extent of the first-pass metabolism of a candidate compound in preclinical studies. The aim of this study is to estimate the first-pass metabolism of an orally administered drug.
Methods: A set of compounds with reported first-pass metabolism data were collected. Moreover, human intestinal absorption percentage and oral bioavailability data were extracted from the literature to propose a classification system that split the drugs up based on their first-pass metabolism extents. Various structural parameters were calculated for each compound. The relations of the structural and physicochemical values of each compound to the class the compound belongs to were obtained using logistic regression.
Results: Initial analysis showed that compounds with logD7.4 > 1 or a rugosity factor of > 1.5 are more likely to have high first-pass metabolism. Four different models that can predict the oral first-pass metabolism with acceptable error were introduced. The overall accuracies of the models were in the range of 72% (for models with simple descriptors) to 78% (for models with complex descriptors). Although the models with simple descriptors have lower accuracies compared to complex models, they are more interpretable and easier for researchers to utilize.
Conclusion: A novel classification of drugs based on the extent of the oral first-pass metabolism was introduced, and mechanistic models were developed to assign candidate compounds to the appropriate proposed classes.
期刊介绍:
Hepatology International is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal focuses mainly on new and emerging diagnostic and treatment options, protocols and molecular and cellular basis of disease pathogenesis, new technologies, in liver and biliary sciences.
Hepatology International publishes original research articles related to clinical care and basic research; review articles; consensus guidelines for diagnosis and treatment; invited editorials, and controversies in contemporary issues. The journal does not publish case reports.