{"title":"可解释时尚兼容性建模方法综述","authors":"Karolina Selwon, Julian Szyma?ski","doi":"10.1145/3664614","DOIUrl":null,"url":null,"abstract":"<p>The paper reviews methods used in the fashion compatibility recommendation domain. We select methods based on reproducibility, explainability, and novelty aspects and then organize them chronologically and thematically. We presented general characteristics of publicly available datasets that are related to the fashion compatibility recommendation task. Finally, we analyzed the representation bias of datasets, fashion-based algorithms’ sustainability, and explainable model assessment. The paper describes practical problem explanations, methodologies, and published datasets that may serve as an inspiration for further research. The proposed structure of the survey organizes knowledge in the fashion recommendation domain and will be beneficial for those who want to learn the topic from scratch, expand their knowledge, or find a new field for research. Furthermore, the information included in this paper could contribute to developing an effective and ethical fashion-based recommendation system.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"50 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of explainable fashion compatibility modeling methods\",\"authors\":\"Karolina Selwon, Julian Szyma?ski\",\"doi\":\"10.1145/3664614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper reviews methods used in the fashion compatibility recommendation domain. We select methods based on reproducibility, explainability, and novelty aspects and then organize them chronologically and thematically. We presented general characteristics of publicly available datasets that are related to the fashion compatibility recommendation task. Finally, we analyzed the representation bias of datasets, fashion-based algorithms’ sustainability, and explainable model assessment. The paper describes practical problem explanations, methodologies, and published datasets that may serve as an inspiration for further research. The proposed structure of the survey organizes knowledge in the fashion recommendation domain and will be beneficial for those who want to learn the topic from scratch, expand their knowledge, or find a new field for research. Furthermore, the information included in this paper could contribute to developing an effective and ethical fashion-based recommendation system.</p>\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3664614\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3664614","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A review of explainable fashion compatibility modeling methods
The paper reviews methods used in the fashion compatibility recommendation domain. We select methods based on reproducibility, explainability, and novelty aspects and then organize them chronologically and thematically. We presented general characteristics of publicly available datasets that are related to the fashion compatibility recommendation task. Finally, we analyzed the representation bias of datasets, fashion-based algorithms’ sustainability, and explainable model assessment. The paper describes practical problem explanations, methodologies, and published datasets that may serve as an inspiration for further research. The proposed structure of the survey organizes knowledge in the fashion recommendation domain and will be beneficial for those who want to learn the topic from scratch, expand their knowledge, or find a new field for research. Furthermore, the information included in this paper could contribute to developing an effective and ethical fashion-based recommendation system.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.