利用基于机器学习的动态 ICA 分布式 CCA 进行故障检测:应用于工业化工过程

IF 3 Q2 ENGINEERING, CHEMICAL
Husnain Ali , Zheng Zhang , Rizwan Safdar , Muhammad Hammad Rasool , Yuan Yao , Le Yao , Furong Gao
{"title":"利用基于机器学习的动态 ICA 分布式 CCA 进行故障检测:应用于工业化工过程","authors":"Husnain Ali ,&nbsp;Zheng Zhang ,&nbsp;Rizwan Safdar ,&nbsp;Muhammad Hammad Rasool ,&nbsp;Yuan Yao ,&nbsp;Le Yao ,&nbsp;Furong Gao","doi":"10.1016/j.dche.2024.100156","DOIUrl":null,"url":null,"abstract":"<div><p>Unexpected accidents and events in industrial chemical processes have resulted in a considerable number of causalities and property damage. Safety process management in industrial chemical processes is critical to avoid and ensure casualties and property damage. However, due to the immense scope and high complexity of current industrial chemical processes, the traditional safety process management approaches cannot address these challenges to attain adequate fault detection accuracy. To address this issue, an innovative machine learning-based distributed canonical correlation analysis-dynamic independent component analysis (DICA-DCCA) approach is needed to improve the fault detection effectiveness of complicated systems. The (DICA-DCCA) model could potentially detect anomalies and faults in industrial chemical data by utilizing three essential statistics:<span><math><msubsup><mi>I</mi><mi>d</mi><mn>2</mn></msubsup></math></span>,<span><math><msubsup><mi>I</mi><mi>e</mi><mn>2</mn></msubsup></math></span>and squared prediction error (<em>SPE</em>). The practical effectiveness of the proposed frameworks is evaluated and compared using a continuous stirred tank reactor (CSTR) framework as a standard benchmark study. The research findings present that the suggested (DICA-DCCA) approach is more resilient and effective in detecting abnormalities and faults than the ICA and DICA approaches with FDR 100 % and FAR 0 %. The implied research approach is robust, operational, and productive.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"11 ","pages":"Article 100156"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772508124000188/pdfft?md5=b0300d9cf2db43a80d477768b4397cd4&pid=1-s2.0-S2772508124000188-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fault detection using machine learning based dynamic ICA-distributed CCA: Application to industrial chemical process\",\"authors\":\"Husnain Ali ,&nbsp;Zheng Zhang ,&nbsp;Rizwan Safdar ,&nbsp;Muhammad Hammad Rasool ,&nbsp;Yuan Yao ,&nbsp;Le Yao ,&nbsp;Furong Gao\",\"doi\":\"10.1016/j.dche.2024.100156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unexpected accidents and events in industrial chemical processes have resulted in a considerable number of causalities and property damage. Safety process management in industrial chemical processes is critical to avoid and ensure casualties and property damage. However, due to the immense scope and high complexity of current industrial chemical processes, the traditional safety process management approaches cannot address these challenges to attain adequate fault detection accuracy. To address this issue, an innovative machine learning-based distributed canonical correlation analysis-dynamic independent component analysis (DICA-DCCA) approach is needed to improve the fault detection effectiveness of complicated systems. The (DICA-DCCA) model could potentially detect anomalies and faults in industrial chemical data by utilizing three essential statistics:<span><math><msubsup><mi>I</mi><mi>d</mi><mn>2</mn></msubsup></math></span>,<span><math><msubsup><mi>I</mi><mi>e</mi><mn>2</mn></msubsup></math></span>and squared prediction error (<em>SPE</em>). The practical effectiveness of the proposed frameworks is evaluated and compared using a continuous stirred tank reactor (CSTR) framework as a standard benchmark study. The research findings present that the suggested (DICA-DCCA) approach is more resilient and effective in detecting abnormalities and faults than the ICA and DICA approaches with FDR 100 % and FAR 0 %. The implied research approach is robust, operational, and productive.</p></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"11 \",\"pages\":\"Article 100156\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772508124000188/pdfft?md5=b0300d9cf2db43a80d477768b4397cd4&pid=1-s2.0-S2772508124000188-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508124000188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

工业化工流程中的意外事故和事件造成了大量人员伤亡和财产损失。要避免和确保人员伤亡和财产损失,工业化工过程的安全过程管理至关重要。然而,由于当前工业化工流程涉及面广、复杂程度高,传统的安全流程管理方法无法应对这些挑战,无法达到足够的故障检测精度。为解决这一问题,需要一种创新的基于机器学习的分布式典型相关分析-动态独立分量分析(DICA-DCCA)方法来提高复杂系统的故障检测效率。DICA-DCCA 模型可以利用三个基本统计量:Id2、Ie2 和预测误差平方(SPE)来检测工业化学数据中的异常和故障。以连续搅拌罐反应器(CSTR)框架作为标准基准研究,对所建议框架的实际效果进行了评估和比较。研究结果表明,在检测异常和故障方面,建议的(DICA-DCCA)方法比 ICA 和 DICA 方法(FDR 100 % 和 FAR 0 %)更有弹性和更有效。所暗示的研究方法具有稳健性、可操作性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fault detection using machine learning based dynamic ICA-distributed CCA: Application to industrial chemical process

Fault detection using machine learning based dynamic ICA-distributed CCA: Application to industrial chemical process

Unexpected accidents and events in industrial chemical processes have resulted in a considerable number of causalities and property damage. Safety process management in industrial chemical processes is critical to avoid and ensure casualties and property damage. However, due to the immense scope and high complexity of current industrial chemical processes, the traditional safety process management approaches cannot address these challenges to attain adequate fault detection accuracy. To address this issue, an innovative machine learning-based distributed canonical correlation analysis-dynamic independent component analysis (DICA-DCCA) approach is needed to improve the fault detection effectiveness of complicated systems. The (DICA-DCCA) model could potentially detect anomalies and faults in industrial chemical data by utilizing three essential statistics:Id2,Ie2and squared prediction error (SPE). The practical effectiveness of the proposed frameworks is evaluated and compared using a continuous stirred tank reactor (CSTR) framework as a standard benchmark study. The research findings present that the suggested (DICA-DCCA) approach is more resilient and effective in detecting abnormalities and faults than the ICA and DICA approaches with FDR 100 % and FAR 0 %. The implied research approach is robust, operational, and productive.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信