预测封闭式和开口式管桩的地震诱发弯矩和侧向位移:遗传编程方法

Laith Sadik , Duaa Al-Jeznawi , Saif Alzabeebee , Musab A.Q. Al-Janabi , Suraparb Keawsawasvong
{"title":"预测封闭式和开口式管桩的地震诱发弯矩和侧向位移:遗传编程方法","authors":"Laith Sadik ,&nbsp;Duaa Al-Jeznawi ,&nbsp;Saif Alzabeebee ,&nbsp;Musab A.Q. Al-Janabi ,&nbsp;Suraparb Keawsawasvong","doi":"10.1016/j.aiig.2024.100076","DOIUrl":null,"url":null,"abstract":"<div><p>Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment, typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction. Despite recent advancements in machine learning techniques, there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available. This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles, employing a Genetic Programming (GP) approach. Utilizing a soil dataset extracted from existing literature, comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading, the study intentionally limited input parameters to three features to enhance model simplicity: Standard Penetration Test (SPT) corrected blow count (N60), Peak Ground Acceleration (PGA), and pile slenderness ratio (L/D). Model performance was assessed via coefficient of determination (R<sup>2</sup>), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE), with R<sup>2</sup> values ranging from 0.95 to 0.99 for the training set, and from 0.92 to 0.98 for the testing set, which indicate of high accuracy of prediction. Finally, the study concludes with a sensitivity analysis, evaluating the influence of each input parameter across different pile types.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"5 ","pages":"Article 100076"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666544124000170/pdfft?md5=f5e7b525ce61feaa66f71c7128079371&pid=1-s2.0-S2666544124000170-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Prediction of seismic-induced bending moment and lateral displacement in closed and open-ended pipe piles: A genetic programming approach\",\"authors\":\"Laith Sadik ,&nbsp;Duaa Al-Jeznawi ,&nbsp;Saif Alzabeebee ,&nbsp;Musab A.Q. Al-Janabi ,&nbsp;Suraparb Keawsawasvong\",\"doi\":\"10.1016/j.aiig.2024.100076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment, typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction. Despite recent advancements in machine learning techniques, there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available. This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles, employing a Genetic Programming (GP) approach. Utilizing a soil dataset extracted from existing literature, comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading, the study intentionally limited input parameters to three features to enhance model simplicity: Standard Penetration Test (SPT) corrected blow count (N60), Peak Ground Acceleration (PGA), and pile slenderness ratio (L/D). Model performance was assessed via coefficient of determination (R<sup>2</sup>), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE), with R<sup>2</sup> values ranging from 0.95 to 0.99 for the training set, and from 0.92 to 0.98 for the testing set, which indicate of high accuracy of prediction. Finally, the study concludes with a sensitivity analysis, evaluating the influence of each input parameter across different pile types.</p></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"5 \",\"pages\":\"Article 100076\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666544124000170/pdfft?md5=f5e7b525ce61feaa66f71c7128079371&pid=1-s2.0-S2666544124000170-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544124000170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544124000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要确保地震荷载下管桩设计的可靠性,就必须准确确定侧向位移和弯矩,这通常需要通过复杂的数值模拟来实现,以解决土桩相互作用的复杂性。尽管机器学习技术近来取得了进步,但由于难以进行正确的数值模拟,且需要不易获得的构成模型参数,因此一直需要建立数据驱动模型,以便在不使用数值模拟的情况下预测这些参数。本研究采用遗传编程(GP)方法,为封闭式和开口式管桩提出了新型侧向位移和弯矩预测模型。该研究利用从现有文献中提取的土壤数据集(包括 392 个数据点),这两种类型的管桩均嵌入无粘性土中并承受地震荷载,研究有意将输入参数限制为三个特征,以提高模型的简易性:标准贯入试验(SPT)校正后的打击次数(N60)、峰值地面加速度(PGA)和桩的细长比(L/D)。模型性能通过判定系数 (R2)、均方根误差 (RMSE) 和平均绝对误差 (MAE) 进行评估,训练集的 R2 值范围为 0.95 至 0.99,测试集的 R2 值范围为 0.92 至 0.98,这表明预测精度很高。最后,研究还进行了敏感性分析,评估了每个输入参数对不同桩型的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of seismic-induced bending moment and lateral displacement in closed and open-ended pipe piles: A genetic programming approach

Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment, typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction. Despite recent advancements in machine learning techniques, there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available. This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles, employing a Genetic Programming (GP) approach. Utilizing a soil dataset extracted from existing literature, comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading, the study intentionally limited input parameters to three features to enhance model simplicity: Standard Penetration Test (SPT) corrected blow count (N60), Peak Ground Acceleration (PGA), and pile slenderness ratio (L/D). Model performance was assessed via coefficient of determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE), with R2 values ranging from 0.95 to 0.99 for the training set, and from 0.92 to 0.98 for the testing set, which indicate of high accuracy of prediction. Finally, the study concludes with a sensitivity analysis, evaluating the influence of each input parameter across different pile types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信