P. Álvarez , F. Cordovilla , M.A. Montealegre , M. Díaz , S. Chacón-Fernández , A. García-Beltrán , I. Angulo , J.L. Ocaña
{"title":"基于模型的输入能量控制,实现可重现的 AISI 316L 激光沉积轨道","authors":"P. Álvarez , F. Cordovilla , M.A. Montealegre , M. Díaz , S. Chacón-Fernández , A. García-Beltrán , I. Angulo , J.L. Ocaña","doi":"10.1016/j.finel.2024.104184","DOIUrl":null,"url":null,"abstract":"<div><p>In the Directed Energy Deposition (DED) process, when the mass flow of metal particles is relatively high, the thickness of the layers increases, leading to a more productive process. The higher the mass flow is, the more difficult it becomes to get a stable melt pool. The accumulation of residual heat in the previously consolidated material constitutes a thermal input affecting the balance at the laser-material interaction zone. An accurate control of the temperature of the laser-material interaction zone is critical to maintain the dynamic viscosity of the liquid metal within the narrow margin in which it can be managed in a stable way. The present work introduces a thermal model in which domains with tunable properties are considered to reproduce the growing of the manufactured sample. Concurrently, a virtual closed-loop PID regulator has been implemented in order to calculate suitable values of laser power to compensate the heat accumulated in the material, offering the results from the model as input process parameters to be directly applied in the real process. The levels of laser power proposed by the model have been experimentally applied, leading to a stable process capable of carrying out in reality the desired component.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"236 ","pages":"Article 104184"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168874X24000787/pdfft?md5=77be96bcf0dd29b1442729dcfc9012f0&pid=1-s2.0-S0168874X24000787-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Model-Based input energy control for reproducible AISI 316L laser deposited tracks\",\"authors\":\"P. Álvarez , F. Cordovilla , M.A. Montealegre , M. Díaz , S. Chacón-Fernández , A. García-Beltrán , I. Angulo , J.L. Ocaña\",\"doi\":\"10.1016/j.finel.2024.104184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the Directed Energy Deposition (DED) process, when the mass flow of metal particles is relatively high, the thickness of the layers increases, leading to a more productive process. The higher the mass flow is, the more difficult it becomes to get a stable melt pool. The accumulation of residual heat in the previously consolidated material constitutes a thermal input affecting the balance at the laser-material interaction zone. An accurate control of the temperature of the laser-material interaction zone is critical to maintain the dynamic viscosity of the liquid metal within the narrow margin in which it can be managed in a stable way. The present work introduces a thermal model in which domains with tunable properties are considered to reproduce the growing of the manufactured sample. Concurrently, a virtual closed-loop PID regulator has been implemented in order to calculate suitable values of laser power to compensate the heat accumulated in the material, offering the results from the model as input process parameters to be directly applied in the real process. The levels of laser power proposed by the model have been experimentally applied, leading to a stable process capable of carrying out in reality the desired component.</p></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":\"236 \",\"pages\":\"Article 104184\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24000787/pdfft?md5=77be96bcf0dd29b1442729dcfc9012f0&pid=1-s2.0-S0168874X24000787-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24000787\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24000787","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Model-Based input energy control for reproducible AISI 316L laser deposited tracks
In the Directed Energy Deposition (DED) process, when the mass flow of metal particles is relatively high, the thickness of the layers increases, leading to a more productive process. The higher the mass flow is, the more difficult it becomes to get a stable melt pool. The accumulation of residual heat in the previously consolidated material constitutes a thermal input affecting the balance at the laser-material interaction zone. An accurate control of the temperature of the laser-material interaction zone is critical to maintain the dynamic viscosity of the liquid metal within the narrow margin in which it can be managed in a stable way. The present work introduces a thermal model in which domains with tunable properties are considered to reproduce the growing of the manufactured sample. Concurrently, a virtual closed-loop PID regulator has been implemented in order to calculate suitable values of laser power to compensate the heat accumulated in the material, offering the results from the model as input process parameters to be directly applied in the real process. The levels of laser power proposed by the model have been experimentally applied, leading to a stable process capable of carrying out in reality the desired component.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.