两根之和近似相等

IF 1.8 2区 数学 Q1 MATHEMATICS
Artūras Dubickas
{"title":"两根之和近似相等","authors":"Artūras Dubickas","doi":"10.1016/j.jco.2024.101866","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the problem of finding how close two sums of <em>m</em>th roots can be to each other. For integers <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>, let <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span> be the largest exponents such that for infinitely many integers <em>N</em> there exist <em>k</em> positive integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>N</mi></math></span> for which two sums of their <em>m</em>th roots <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mroot><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mi>m</mi></mrow></mroot></math></span> and <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mi>s</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mroot><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mi>m</mi></mrow></mroot></math></span> are distinct but not further than <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> from each other, or they are distinct modulo 1 but not further than <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> from each other modulo 1. Some upper bounds on <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> can be derived by a Liouville-type argument, while lower bounds are usually difficult to obtain. We prove that <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>min</mi><mo>⁡</mo><mo>(</mo><mn>2</mn><mi>s</mi><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn><mi>s</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>/</mo><mi>m</mi></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>s</mi><mo>&lt;</mo><mi>k</mi></math></span> and that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>min</mi><mo>⁡</mo><mo>(</mo><mn>2</mn><mi>s</mi><mo>,</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>,</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn><mi>s</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>m</mi></math></span> for <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>. Very recently, Steinerberger managed to show that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>c</mi><mroot><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mroot></math></span>, where <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span> is a small absolute constant. This seems to be the first result when the bound for <span><math><mi>s</mi><mo>=</mo><mi>k</mi></math></span> is increasing in <em>k</em>. By an entirely different argument, for any integers <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and <em>s</em> in the range <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>, we show that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>/</mo><mi>m</mi><mo>+</mo><mn>1</mn></math></span>. In particular, for <span><math><mi>m</mi><mo>=</mo><mn>2</mn></math></span> and any non-negative integer <span><math><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>, this yields the bound <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>k</mi><mo>/</mo><mn>2</mn></math></span>, which is much better than <span><math><mi>c</mi><mroot><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mroot></math></span>. We also prove that <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>=</mo><mn>7</mn><mo>/</mo><mn>2</mn></math></span>, which settles a problem raised by O'Rourke in 1981. These problems can be also considered for non-integer <em>m</em>. In particular, we show that <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>≤</mo><mn>4</mn><mo>/</mo><mn>3</mn></math></span>, and that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span> under assumption of the <em>abc</em>-conjecture.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate equality for two sums of roots\",\"authors\":\"Artūras Dubickas\",\"doi\":\"10.1016/j.jco.2024.101866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the problem of finding how close two sums of <em>m</em>th roots can be to each other. For integers <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>, let <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span> be the largest exponents such that for infinitely many integers <em>N</em> there exist <em>k</em> positive integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>N</mi></math></span> for which two sums of their <em>m</em>th roots <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mroot><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mi>m</mi></mrow></mroot></math></span> and <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mi>s</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mroot><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mi>m</mi></mrow></mroot></math></span> are distinct but not further than <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> from each other, or they are distinct modulo 1 but not further than <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> from each other modulo 1. Some upper bounds on <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> can be derived by a Liouville-type argument, while lower bounds are usually difficult to obtain. We prove that <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>min</mi><mo>⁡</mo><mo>(</mo><mn>2</mn><mi>s</mi><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn><mi>s</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>/</mo><mi>m</mi></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>s</mi><mo>&lt;</mo><mi>k</mi></math></span> and that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>min</mi><mo>⁡</mo><mo>(</mo><mn>2</mn><mi>s</mi><mo>,</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>,</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn><mi>s</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>m</mi></math></span> for <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>. Very recently, Steinerberger managed to show that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>c</mi><mroot><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mroot></math></span>, where <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span> is a small absolute constant. This seems to be the first result when the bound for <span><math><mi>s</mi><mo>=</mo><mi>k</mi></math></span> is increasing in <em>k</em>. By an entirely different argument, for any integers <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and <em>s</em> in the range <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>, we show that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>/</mo><mi>m</mi><mo>+</mo><mn>1</mn></math></span>. In particular, for <span><math><mi>m</mi><mo>=</mo><mn>2</mn></math></span> and any non-negative integer <span><math><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>, this yields the bound <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>k</mi><mo>/</mo><mn>2</mn></math></span>, which is much better than <span><math><mi>c</mi><mroot><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mroot></math></span>. We also prove that <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>=</mo><mn>7</mn><mo>/</mo><mn>2</mn></math></span>, which settles a problem raised by O'Rourke in 1981. These problems can be also considered for non-integer <em>m</em>. In particular, we show that <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>≤</mo><mn>4</mn><mo>/</mo><mn>3</mn></math></span>, and that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span> under assumption of the <em>abc</em>-conjecture.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000438\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000438","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑的问题是求两个第 m 次根的和能有多接近。对于整数 m≥2,k≥1 和 0≤s≤k,设 em(s,k)>0 和 Em(s,k)>0 为最大指数,使得对于无穷多个整数 N,存在 k 个正整数 a1,...,ak≤N,其中它们的 m 次根 ∑j=1sajm 和 ∑j=s+1kajm 的两个和是不同的,但彼此相距不超过 N-em(s,k),或者它们是不同的,但彼此相距不超过 N-Em(s,k)。em(s,k)和 Em(s,k) 的一些上界可以通过柳维尔式论证推导出来,而下界通常很难获得。我们证明,对于 1≤s<k ,em(s,k)≥min(2s,k-1,2k-2s)-1/m;对于 0≤s≤k ,Em(s,k)≥min(2s,k-2,2k-2s)+2-1/m。最近,斯坦纳伯格成功地证明了 E2(k,k)≥ck3,其中 c>0 是一个很小的绝对常数。通过完全不同的论证,对于任意整数 m≥2,k≥1,且 s 在 0≤s≤k 范围内,我们证明了 Em(s,k)≥(k-2)/m+1。特别是,对于 m=2 和任何非负整数 s≤k,可以得到 E2(s,k)≥k/2 的约束,这比 ck3 好得多。我们还证明了 E2(2,4)=7/2 ,解决了奥罗克在 1981 年提出的一个问题。我们特别证明了 1≤E3/2(1,1)≤4/3 和 E3/2(1,1)=1 在 abc 猜想的假设下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate equality for two sums of roots

In this paper, we consider the problem of finding how close two sums of mth roots can be to each other. For integers m2, k1 and 0sk, let em(s,k)>0 and Em(s,k)>0 be the largest exponents such that for infinitely many integers N there exist k positive integers a1,,akN for which two sums of their mth roots j=1sajm and j=s+1kajm are distinct but not further than Nem(s,k) from each other, or they are distinct modulo 1 but not further than NEm(s,k) from each other modulo 1. Some upper bounds on em(s,k) and Em(s,k) can be derived by a Liouville-type argument, while lower bounds are usually difficult to obtain. We prove that em(s,k)min(2s,k1,2k2s)1/m for 1s<k and that Em(s,k)min(2s,k2,2k2s)+21/m for 0sk. Very recently, Steinerberger managed to show that E2(k,k)ck3, where c>0 is a small absolute constant. This seems to be the first result when the bound for s=k is increasing in k. By an entirely different argument, for any integers m2, k1 and s in the range 0sk, we show that Em(s,k)(k2)/m+1. In particular, for m=2 and any non-negative integer sk, this yields the bound E2(s,k)k/2, which is much better than ck3. We also prove that e2(2,4)=7/2, which settles a problem raised by O'Rourke in 1981. These problems can be also considered for non-integer m. In particular, we show that 1E3/2(1,1)4/3, and that E3/2(1,1)=1 under assumption of the abc-conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信