{"title":"两根之和近似相等","authors":"Artūras Dubickas","doi":"10.1016/j.jco.2024.101866","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the problem of finding how close two sums of <em>m</em>th roots can be to each other. For integers <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>, let <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span> be the largest exponents such that for infinitely many integers <em>N</em> there exist <em>k</em> positive integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>N</mi></math></span> for which two sums of their <em>m</em>th roots <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mroot><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mi>m</mi></mrow></mroot></math></span> and <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mi>s</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mroot><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mi>m</mi></mrow></mroot></math></span> are distinct but not further than <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> from each other, or they are distinct modulo 1 but not further than <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> from each other modulo 1. Some upper bounds on <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> can be derived by a Liouville-type argument, while lower bounds are usually difficult to obtain. We prove that <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>min</mi><mo></mo><mo>(</mo><mn>2</mn><mi>s</mi><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn><mi>s</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>/</mo><mi>m</mi></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>s</mi><mo><</mo><mi>k</mi></math></span> and that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>min</mi><mo></mo><mo>(</mo><mn>2</mn><mi>s</mi><mo>,</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>,</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn><mi>s</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>m</mi></math></span> for <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>. Very recently, Steinerberger managed to show that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>c</mi><mroot><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mroot></math></span>, where <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> is a small absolute constant. This seems to be the first result when the bound for <span><math><mi>s</mi><mo>=</mo><mi>k</mi></math></span> is increasing in <em>k</em>. By an entirely different argument, for any integers <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and <em>s</em> in the range <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>, we show that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>/</mo><mi>m</mi><mo>+</mo><mn>1</mn></math></span>. In particular, for <span><math><mi>m</mi><mo>=</mo><mn>2</mn></math></span> and any non-negative integer <span><math><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>, this yields the bound <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>k</mi><mo>/</mo><mn>2</mn></math></span>, which is much better than <span><math><mi>c</mi><mroot><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mroot></math></span>. We also prove that <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>=</mo><mn>7</mn><mo>/</mo><mn>2</mn></math></span>, which settles a problem raised by O'Rourke in 1981. These problems can be also considered for non-integer <em>m</em>. In particular, we show that <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>≤</mo><mn>4</mn><mo>/</mo><mn>3</mn></math></span>, and that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span> under assumption of the <em>abc</em>-conjecture.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate equality for two sums of roots\",\"authors\":\"Artūras Dubickas\",\"doi\":\"10.1016/j.jco.2024.101866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the problem of finding how close two sums of <em>m</em>th roots can be to each other. For integers <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>, let <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span> be the largest exponents such that for infinitely many integers <em>N</em> there exist <em>k</em> positive integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>N</mi></math></span> for which two sums of their <em>m</em>th roots <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mroot><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mi>m</mi></mrow></mroot></math></span> and <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mi>s</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mroot><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow><mrow><mi>m</mi></mrow></mroot></math></span> are distinct but not further than <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> from each other, or they are distinct modulo 1 but not further than <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> from each other modulo 1. Some upper bounds on <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> can be derived by a Liouville-type argument, while lower bounds are usually difficult to obtain. We prove that <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>min</mi><mo></mo><mo>(</mo><mn>2</mn><mi>s</mi><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn><mi>s</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>/</mo><mi>m</mi></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>s</mi><mo><</mo><mi>k</mi></math></span> and that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>min</mi><mo></mo><mo>(</mo><mn>2</mn><mi>s</mi><mo>,</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>,</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>2</mn><mi>s</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>m</mi></math></span> for <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>. Very recently, Steinerberger managed to show that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>c</mi><mroot><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mroot></math></span>, where <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> is a small absolute constant. This seems to be the first result when the bound for <span><math><mi>s</mi><mo>=</mo><mi>k</mi></math></span> is increasing in <em>k</em>. By an entirely different argument, for any integers <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> and <em>s</em> in the range <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>, we show that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>/</mo><mi>m</mi><mo>+</mo><mn>1</mn></math></span>. In particular, for <span><math><mi>m</mi><mo>=</mo><mn>2</mn></math></span> and any non-negative integer <span><math><mi>s</mi><mo>≤</mo><mi>k</mi></math></span>, this yields the bound <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>s</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≥</mo><mi>k</mi><mo>/</mo><mn>2</mn></math></span>, which is much better than <span><math><mi>c</mi><mroot><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mroot></math></span>. We also prove that <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>=</mo><mn>7</mn><mo>/</mo><mn>2</mn></math></span>, which settles a problem raised by O'Rourke in 1981. These problems can be also considered for non-integer <em>m</em>. In particular, we show that <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>≤</mo><mn>4</mn><mo>/</mo><mn>3</mn></math></span>, and that <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span> under assumption of the <em>abc</em>-conjecture.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000438\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000438","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we consider the problem of finding how close two sums of mth roots can be to each other. For integers , and , let and be the largest exponents such that for infinitely many integers N there exist k positive integers for which two sums of their mth roots and are distinct but not further than from each other, or they are distinct modulo 1 but not further than from each other modulo 1. Some upper bounds on and can be derived by a Liouville-type argument, while lower bounds are usually difficult to obtain. We prove that for and that for . Very recently, Steinerberger managed to show that , where is a small absolute constant. This seems to be the first result when the bound for is increasing in k. By an entirely different argument, for any integers , and s in the range , we show that . In particular, for and any non-negative integer , this yields the bound , which is much better than . We also prove that , which settles a problem raised by O'Rourke in 1981. These problems can be also considered for non-integer m. In particular, we show that , and that under assumption of the abc-conjecture.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.