Rohit Budhraja , Silvia Radenkovic , Anu Jain , Irena J.J. Muffels , Moulay Hicham Alaoui Ismaili , Tamas Kozicz , Akhilesh Pandey , Eva Morava
{"title":"脂质体包裹的 1-磷酸甘露糖疗法可改善不同先天性糖基化紊乱的全局 N-糖基化状况","authors":"Rohit Budhraja , Silvia Radenkovic , Anu Jain , Irena J.J. Muffels , Moulay Hicham Alaoui Ismaili , Tamas Kozicz , Akhilesh Pandey , Eva Morava","doi":"10.1016/j.ymgme.2024.108487","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphomannomutase 2 (PMM2) converts mannose-6-phospahate to mannose-1-phosphate; the substrate for GDP-mannose, a building block of the glycosylation biosynthetic pathway. Pathogenic variants in the <em>PMM2</em> gene have been shown to be associated with protein hypoglycosylation causing PMM2-congenital disorder of glycosylation (PMM2-CDG). While mannose supplementation improves glycosylation in vitro, but not in vivo, we hypothesized that liposomal delivery of mannose-1-phosphate could increase the stability and delivery of the activated sugar to enter the targeted compartments of cells. Thus, we studied the effect of liposome-encapsulated mannose-1-P (GLM101) on global protein glycosylation and on the cellular proteome in skin fibroblasts from individuals with PMM2-CDG, as well as in individuals with two N-glycosylation defects early in the pathway, namely ALG2-CDG and ALG11-CDG. We leveraged multiplexed proteomics and N-glycoproteomics in fibroblasts derived from different individuals with various pathogenic variants in <em>PMM2, ALG2</em> and <em>ALG11</em> genes. Proteomics data revealed a moderate but significant change in the abundance of some of the proteins in all CDG fibroblasts upon GLM101 treatment. On the other hand, N-glycoproteomics revealed the GLM101 treatment enhanced the expression levels of several high-mannose and complex/hybrid glycopeptides from numerous cellular proteins in individuals with defects in <em>PMM2</em> and <em>ALG2</em> genes. Both PMM2-CDG and ALG2-CDG exhibited several-fold increase in glycopeptides bearing Man<sub>6</sub> and higher glycans and a decrease in Man<sub>5</sub> and smaller glycan moieties, suggesting that GLM101 helps in the formation of mature glycoforms. These changes in protein glycosylation were observed in all individuals irrespective of their genetic variants. ALG11-CDG fibroblasts also showed increase in high mannose glycopeptides upon treatment; however, the improvement was not as dramatic as the other two CDG. Overall, our findings suggest that treatment with GLM101 overcomes the genetic block in the glycosylation pathway and can be used as a potential therapy for CDG with enzymatic defects in early steps in protein N-glycosylation.</p></div>","PeriodicalId":18937,"journal":{"name":"Molecular genetics and metabolism","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liposome-encapsulated mannose-1-phosphate therapy improves global N-glycosylation in different congenital disorders of glycosylation\",\"authors\":\"Rohit Budhraja , Silvia Radenkovic , Anu Jain , Irena J.J. Muffels , Moulay Hicham Alaoui Ismaili , Tamas Kozicz , Akhilesh Pandey , Eva Morava\",\"doi\":\"10.1016/j.ymgme.2024.108487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phosphomannomutase 2 (PMM2) converts mannose-6-phospahate to mannose-1-phosphate; the substrate for GDP-mannose, a building block of the glycosylation biosynthetic pathway. Pathogenic variants in the <em>PMM2</em> gene have been shown to be associated with protein hypoglycosylation causing PMM2-congenital disorder of glycosylation (PMM2-CDG). While mannose supplementation improves glycosylation in vitro, but not in vivo, we hypothesized that liposomal delivery of mannose-1-phosphate could increase the stability and delivery of the activated sugar to enter the targeted compartments of cells. Thus, we studied the effect of liposome-encapsulated mannose-1-P (GLM101) on global protein glycosylation and on the cellular proteome in skin fibroblasts from individuals with PMM2-CDG, as well as in individuals with two N-glycosylation defects early in the pathway, namely ALG2-CDG and ALG11-CDG. We leveraged multiplexed proteomics and N-glycoproteomics in fibroblasts derived from different individuals with various pathogenic variants in <em>PMM2, ALG2</em> and <em>ALG11</em> genes. Proteomics data revealed a moderate but significant change in the abundance of some of the proteins in all CDG fibroblasts upon GLM101 treatment. On the other hand, N-glycoproteomics revealed the GLM101 treatment enhanced the expression levels of several high-mannose and complex/hybrid glycopeptides from numerous cellular proteins in individuals with defects in <em>PMM2</em> and <em>ALG2</em> genes. Both PMM2-CDG and ALG2-CDG exhibited several-fold increase in glycopeptides bearing Man<sub>6</sub> and higher glycans and a decrease in Man<sub>5</sub> and smaller glycan moieties, suggesting that GLM101 helps in the formation of mature glycoforms. These changes in protein glycosylation were observed in all individuals irrespective of their genetic variants. ALG11-CDG fibroblasts also showed increase in high mannose glycopeptides upon treatment; however, the improvement was not as dramatic as the other two CDG. Overall, our findings suggest that treatment with GLM101 overcomes the genetic block in the glycosylation pathway and can be used as a potential therapy for CDG with enzymatic defects in early steps in protein N-glycosylation.</p></div>\",\"PeriodicalId\":18937,\"journal\":{\"name\":\"Molecular genetics and metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular genetics and metabolism\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096719224003718\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular genetics and metabolism","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096719224003718","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Liposome-encapsulated mannose-1-phosphate therapy improves global N-glycosylation in different congenital disorders of glycosylation
Phosphomannomutase 2 (PMM2) converts mannose-6-phospahate to mannose-1-phosphate; the substrate for GDP-mannose, a building block of the glycosylation biosynthetic pathway. Pathogenic variants in the PMM2 gene have been shown to be associated with protein hypoglycosylation causing PMM2-congenital disorder of glycosylation (PMM2-CDG). While mannose supplementation improves glycosylation in vitro, but not in vivo, we hypothesized that liposomal delivery of mannose-1-phosphate could increase the stability and delivery of the activated sugar to enter the targeted compartments of cells. Thus, we studied the effect of liposome-encapsulated mannose-1-P (GLM101) on global protein glycosylation and on the cellular proteome in skin fibroblasts from individuals with PMM2-CDG, as well as in individuals with two N-glycosylation defects early in the pathway, namely ALG2-CDG and ALG11-CDG. We leveraged multiplexed proteomics and N-glycoproteomics in fibroblasts derived from different individuals with various pathogenic variants in PMM2, ALG2 and ALG11 genes. Proteomics data revealed a moderate but significant change in the abundance of some of the proteins in all CDG fibroblasts upon GLM101 treatment. On the other hand, N-glycoproteomics revealed the GLM101 treatment enhanced the expression levels of several high-mannose and complex/hybrid glycopeptides from numerous cellular proteins in individuals with defects in PMM2 and ALG2 genes. Both PMM2-CDG and ALG2-CDG exhibited several-fold increase in glycopeptides bearing Man6 and higher glycans and a decrease in Man5 and smaller glycan moieties, suggesting that GLM101 helps in the formation of mature glycoforms. These changes in protein glycosylation were observed in all individuals irrespective of their genetic variants. ALG11-CDG fibroblasts also showed increase in high mannose glycopeptides upon treatment; however, the improvement was not as dramatic as the other two CDG. Overall, our findings suggest that treatment with GLM101 overcomes the genetic block in the glycosylation pathway and can be used as a potential therapy for CDG with enzymatic defects in early steps in protein N-glycosylation.
期刊介绍:
Molecular Genetics and Metabolism contributes to the understanding of the metabolic and molecular basis of disease. This peer reviewed journal publishes articles describing investigations that use the tools of biochemical genetics and molecular genetics for studies of normal and disease states in humans and animal models.