通过超大规模高性能计算、人工智能和量子计算推动生物分子模拟的发展

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Edward O. Pyzer-Knapp , Alessandro Curioni
{"title":"通过超大规模高性能计算、人工智能和量子计算推动生物分子模拟的发展","authors":"Edward O. Pyzer-Knapp ,&nbsp;Alessandro Curioni","doi":"10.1016/j.sbi.2024.102826","DOIUrl":null,"url":null,"abstract":"<div><p>Biomolecular simulation can act as both a digital microscope and a crystal ball; offering the potential for a deeper understanding of experimental observations whilst also presenting a forward-looking avenue for the in silico design and evaluation of hitherto unsynthesized compounds. Indeed, as the intricacy of our scientific inquiries has grown, so too has the computational prowess we seek to deploy in our pursuit of answers. As we enter the Exascale era, this mini-review surveys the computational landscape from both the point of view of the development of new and ever more powerful systems, and the simulations that are run on them. Moreover, as we stand on the cusp of a transformative phase in computational biology, this article offers a contemplative glance into the future, speculating on the profound implications of artificial intelligence and quantum computing for large-scale biomolecular simulations.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"87 ","pages":"Article 102826"},"PeriodicalIF":6.1000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24000538/pdfft?md5=7bdabd69afabd70a99fe2e7ee718749e&pid=1-s2.0-S0959440X24000538-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advancing biomolecular simulation through exascale HPC, AI and quantum computing\",\"authors\":\"Edward O. Pyzer-Knapp ,&nbsp;Alessandro Curioni\",\"doi\":\"10.1016/j.sbi.2024.102826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biomolecular simulation can act as both a digital microscope and a crystal ball; offering the potential for a deeper understanding of experimental observations whilst also presenting a forward-looking avenue for the in silico design and evaluation of hitherto unsynthesized compounds. Indeed, as the intricacy of our scientific inquiries has grown, so too has the computational prowess we seek to deploy in our pursuit of answers. As we enter the Exascale era, this mini-review surveys the computational landscape from both the point of view of the development of new and ever more powerful systems, and the simulations that are run on them. Moreover, as we stand on the cusp of a transformative phase in computational biology, this article offers a contemplative glance into the future, speculating on the profound implications of artificial intelligence and quantum computing for large-scale biomolecular simulations.</p></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"87 \",\"pages\":\"Article 102826\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000538/pdfft?md5=7bdabd69afabd70a99fe2e7ee718749e&pid=1-s2.0-S0959440X24000538-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000538\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24000538","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物分子模拟既可以作为数字显微镜,也可以作为水晶球;既可以加深对实验观察结果的理解,也可以为迄今尚未合成的化合物的硅学设计和评估提供前瞻性途径。事实上,随着我们科学探索的复杂性不断增加,我们在寻找答案时所寻求的计算能力也在不断增强。随着我们进入 Exascale 时代,这篇微型综述将从开发新的、功能更强大的系统以及在这些系统上运行的模拟这两个角度来审视计算领域。此外,当我们站在计算生物学变革阶段的风口浪尖时,本文对未来进行了思考,推测了人工智能和量子计算对大规模生物分子模拟的深远影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing biomolecular simulation through exascale HPC, AI and quantum computing

Biomolecular simulation can act as both a digital microscope and a crystal ball; offering the potential for a deeper understanding of experimental observations whilst also presenting a forward-looking avenue for the in silico design and evaluation of hitherto unsynthesized compounds. Indeed, as the intricacy of our scientific inquiries has grown, so too has the computational prowess we seek to deploy in our pursuit of answers. As we enter the Exascale era, this mini-review surveys the computational landscape from both the point of view of the development of new and ever more powerful systems, and the simulations that are run on them. Moreover, as we stand on the cusp of a transformative phase in computational biology, this article offers a contemplative glance into the future, speculating on the profound implications of artificial intelligence and quantum computing for large-scale biomolecular simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信