Roberto Longo, Giorgio Lacanna, Lorenzo Innocenti, Maurizio Ripepe
{"title":"改进火山爆发预警系统的人工智能和机器学习工具:斯特龙博利案例。","authors":"Roberto Longo, Giorgio Lacanna, Lorenzo Innocenti, Maurizio Ripepe","doi":"10.1109/TPAMI.2024.3399689","DOIUrl":null,"url":null,"abstract":"<p><p>Explosive volcanic blasts can occur suddenly and without any clear precursors. Many volcanoes have erupted in the last years with no evident change in the eruptive parameters and with dramatic consequences for the population living nearby the volcano and the tourists visiting the active areas. In recent years, a big effort has been made to develop Early Warning systems to issue timely alerts to the population. At Stromboli volcano, the development of sensitive instruments to measure the deformation (tilt) of the ground has revealed that the volcano edifice is inflating tens of minutes before the explosion following a recurrent exponential ramp-like pattern. This scale-invariant of ground deformation has allowed the development of a quasi-deterministic Early Warning system which is operative since 2019. In this article we show how Artificial Intelligence and Machine Learning can be successfully applied to improve the efficiency and the sensitivity of Early Warning systems, provided the availability of a comprehensive experimental data set on past explosive events. The approach presented here for the Stromboli case demonstrates promising results also in forecasting the intensity of explosive events, offering valuable insights and new perspectives into the potential risks associated with volcanic activities.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence and Machine Learning Tools for Improving Early Warning Systems of Volcanic Eruptions: The Case of Stromboli.\",\"authors\":\"Roberto Longo, Giorgio Lacanna, Lorenzo Innocenti, Maurizio Ripepe\",\"doi\":\"10.1109/TPAMI.2024.3399689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Explosive volcanic blasts can occur suddenly and without any clear precursors. Many volcanoes have erupted in the last years with no evident change in the eruptive parameters and with dramatic consequences for the population living nearby the volcano and the tourists visiting the active areas. In recent years, a big effort has been made to develop Early Warning systems to issue timely alerts to the population. At Stromboli volcano, the development of sensitive instruments to measure the deformation (tilt) of the ground has revealed that the volcano edifice is inflating tens of minutes before the explosion following a recurrent exponential ramp-like pattern. This scale-invariant of ground deformation has allowed the development of a quasi-deterministic Early Warning system which is operative since 2019. In this article we show how Artificial Intelligence and Machine Learning can be successfully applied to improve the efficiency and the sensitivity of Early Warning systems, provided the availability of a comprehensive experimental data set on past explosive events. The approach presented here for the Stromboli case demonstrates promising results also in forecasting the intensity of explosive events, offering valuable insights and new perspectives into the potential risks associated with volcanic activities.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2024.3399689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3399689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Artificial Intelligence and Machine Learning Tools for Improving Early Warning Systems of Volcanic Eruptions: The Case of Stromboli.
Explosive volcanic blasts can occur suddenly and without any clear precursors. Many volcanoes have erupted in the last years with no evident change in the eruptive parameters and with dramatic consequences for the population living nearby the volcano and the tourists visiting the active areas. In recent years, a big effort has been made to develop Early Warning systems to issue timely alerts to the population. At Stromboli volcano, the development of sensitive instruments to measure the deformation (tilt) of the ground has revealed that the volcano edifice is inflating tens of minutes before the explosion following a recurrent exponential ramp-like pattern. This scale-invariant of ground deformation has allowed the development of a quasi-deterministic Early Warning system which is operative since 2019. In this article we show how Artificial Intelligence and Machine Learning can be successfully applied to improve the efficiency and the sensitivity of Early Warning systems, provided the availability of a comprehensive experimental data set on past explosive events. The approach presented here for the Stromboli case demonstrates promising results also in forecasting the intensity of explosive events, offering valuable insights and new perspectives into the potential risks associated with volcanic activities.