二维脑电图背景电位估计的机器学习方法

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Carlo da Cunha , Nobuyuki Aoki , David K. Ferry , Kevin Vora , Yu Zhang
{"title":"二维脑电图背景电位估计的机器学习方法","authors":"Carlo da Cunha ,&nbsp;Nobuyuki Aoki ,&nbsp;David K. Ferry ,&nbsp;Kevin Vora ,&nbsp;Yu Zhang","doi":"10.1016/j.physe.2024.115987","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional electron gases (2DEGs) can show exceptional carrier mobility, making them promising candidates for future quantum technologies. However, impurities and defects can significantly degrade their performance, impacting transport, conductivity, and coherence times. We leverage scanning gate microscopy (SGM) and machine learning approaches to extract the potential landscape of 2DEGs from SGM data. We compare three techniques: image-to-image translation with generative adversarial networks (GANs), cellular neural networks (CNNs), and an evolutionary search algorithm. Notably, the evolutionary approach outperforms both alternatives in defect identification and analysis. This work clarifies the interaction between defects and 2DEG properties, demonstrating the potential of machine learning for understanding and manipulating quantum materials, facilitating advancements in quantum computing and nanoelectronics.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning methods for background potential estimation in 2DEGs\",\"authors\":\"Carlo da Cunha ,&nbsp;Nobuyuki Aoki ,&nbsp;David K. Ferry ,&nbsp;Kevin Vora ,&nbsp;Yu Zhang\",\"doi\":\"10.1016/j.physe.2024.115987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-dimensional electron gases (2DEGs) can show exceptional carrier mobility, making them promising candidates for future quantum technologies. However, impurities and defects can significantly degrade their performance, impacting transport, conductivity, and coherence times. We leverage scanning gate microscopy (SGM) and machine learning approaches to extract the potential landscape of 2DEGs from SGM data. We compare three techniques: image-to-image translation with generative adversarial networks (GANs), cellular neural networks (CNNs), and an evolutionary search algorithm. Notably, the evolutionary approach outperforms both alternatives in defect identification and analysis. This work clarifies the interaction between defects and 2DEG properties, demonstrating the potential of machine learning for understanding and manipulating quantum materials, facilitating advancements in quantum computing and nanoelectronics.</p></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724000912\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724000912","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二维电子气体(2DEG)可显示出卓越的载流子迁移率,使其成为未来量子技术的理想候选材料。然而,杂质和缺陷会显著降低它们的性能,影响传输、电导率和相干时间。我们利用扫描栅极显微镜(SGM)和机器学习方法,从 SGM 数据中提取 2DEG 的潜在景观。我们比较了三种技术:利用生成式对抗网络 (GAN)、细胞神经网络 (CNN) 和进化搜索算法进行图像到图像的转换。值得注意的是,进化方法在缺陷识别和分析方面优于这两种方法。这项工作阐明了缺陷与二维电子元件特性之间的相互作用,展示了机器学习在理解和操纵量子材料方面的潜力,促进了量子计算和纳米电子学的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning methods for background potential estimation in 2DEGs

Two-dimensional electron gases (2DEGs) can show exceptional carrier mobility, making them promising candidates for future quantum technologies. However, impurities and defects can significantly degrade their performance, impacting transport, conductivity, and coherence times. We leverage scanning gate microscopy (SGM) and machine learning approaches to extract the potential landscape of 2DEGs from SGM data. We compare three techniques: image-to-image translation with generative adversarial networks (GANs), cellular neural networks (CNNs), and an evolutionary search algorithm. Notably, the evolutionary approach outperforms both alternatives in defect identification and analysis. This work clarifies the interaction between defects and 2DEG properties, demonstrating the potential of machine learning for understanding and manipulating quantum materials, facilitating advancements in quantum computing and nanoelectronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信