比较基因组分析揭示了 Lagerstroemia indica 中 DnaJ 基因家族的扩展及其成员对盐胁迫的响应。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-06-01 Epub Date: 2024-05-10 DOI:10.1007/s10709-024-00208-1
Jin Qin, Xiaoyu Hou, Huanzhe Wang, Tianyi Yuan, Hui Wei, Guoyuan Liu, Yanhong Chen, Bolin Lian, Fei Zhong, Jian Zhang, Chunmei Yu
{"title":"比较基因组分析揭示了 Lagerstroemia indica 中 DnaJ 基因家族的扩展及其成员对盐胁迫的响应。","authors":"Jin Qin, Xiaoyu Hou, Huanzhe Wang, Tianyi Yuan, Hui Wei, Guoyuan Liu, Yanhong Chen, Bolin Lian, Fei Zhong, Jian Zhang, Chunmei Yu","doi":"10.1007/s10709-024-00208-1","DOIUrl":null,"url":null,"abstract":"<p><p>DnaJs/Hsp40s/JPDs are obligate co-chaperones of heat shock proteins (Hsp70), performing crucial biological functions within organisms. A comparative genome analysis of four genomes (Vitis vinifera, Eucalyptus grandis, Lagerstroemia indica, and Punica granatum) revealed that the DnaJ gene family in L. indica has undergone expansion, although not to the extent observed in P. granatum. Inter-genome collinearity analysis of four plants indicates that members belonging to Class A and B are more conserved during evolution. In L. indica, the expanded members primarily belong to Class-C. Tissue expression patterns and the biochemical characterization of LiDnaJs further suggested that DnaJs may be involved in numerous biological processes in L. indica. Transcriptome and qPCR analyses of salt stressed leaves identified at least ten LiDnaJs that responded to salt stress. In summary, we have elucidated the expansion mechanism of the LiDnaJs, which is attributed to a recent whole-genome triplication. This research laid the foundation for functional analysis of LiDnaJs and provides gene resources for breeding salt-tolerant varieties of L. indica.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative genomic analysis reveals expansion of the DnaJ gene family in Lagerstroemia indica and its members response to salt stress.\",\"authors\":\"Jin Qin, Xiaoyu Hou, Huanzhe Wang, Tianyi Yuan, Hui Wei, Guoyuan Liu, Yanhong Chen, Bolin Lian, Fei Zhong, Jian Zhang, Chunmei Yu\",\"doi\":\"10.1007/s10709-024-00208-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DnaJs/Hsp40s/JPDs are obligate co-chaperones of heat shock proteins (Hsp70), performing crucial biological functions within organisms. A comparative genome analysis of four genomes (Vitis vinifera, Eucalyptus grandis, Lagerstroemia indica, and Punica granatum) revealed that the DnaJ gene family in L. indica has undergone expansion, although not to the extent observed in P. granatum. Inter-genome collinearity analysis of four plants indicates that members belonging to Class A and B are more conserved during evolution. In L. indica, the expanded members primarily belong to Class-C. Tissue expression patterns and the biochemical characterization of LiDnaJs further suggested that DnaJs may be involved in numerous biological processes in L. indica. Transcriptome and qPCR analyses of salt stressed leaves identified at least ten LiDnaJs that responded to salt stress. In summary, we have elucidated the expansion mechanism of the LiDnaJs, which is attributed to a recent whole-genome triplication. This research laid the foundation for functional analysis of LiDnaJs and provides gene resources for breeding salt-tolerant varieties of L. indica.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10709-024-00208-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-024-00208-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

DnaJs/Hsp40s/JPDs是热休克蛋白(Hsp70)的强制性辅助伴侣,在生物体内发挥着重要的生物学功能。对四个基因组(葡萄、桉树、籼稻和石榴)进行的基因组比较分析表明,籼稻中的 DnaJ 基因家族发生了扩展,但扩展程度不如石榴。对四种植物进行的基因组间共线性分析表明,属于 A 类和 B 类的成员在进化过程中更为保守。在 L. indica 中,扩展的成员主要属于 C 类。LiDnaJs的组织表达模式和生化特征进一步表明,DnaJs可能参与了籼稻的许多生物过程。盐胁迫叶片的转录组和 qPCR 分析确定了至少十个对盐胁迫有反应的 LiDnaJs。总之,我们阐明了 LiDnaJs 的扩增机制,这要归功于最近的全基因组三倍化。这项研究为 LiDnaJs 的功能分析奠定了基础,并为培育籼稻耐盐品种提供了基因资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative genomic analysis reveals expansion of the DnaJ gene family in Lagerstroemia indica and its members response to salt stress.

Comparative genomic analysis reveals expansion of the DnaJ gene family in Lagerstroemia indica and its members response to salt stress.

DnaJs/Hsp40s/JPDs are obligate co-chaperones of heat shock proteins (Hsp70), performing crucial biological functions within organisms. A comparative genome analysis of four genomes (Vitis vinifera, Eucalyptus grandis, Lagerstroemia indica, and Punica granatum) revealed that the DnaJ gene family in L. indica has undergone expansion, although not to the extent observed in P. granatum. Inter-genome collinearity analysis of four plants indicates that members belonging to Class A and B are more conserved during evolution. In L. indica, the expanded members primarily belong to Class-C. Tissue expression patterns and the biochemical characterization of LiDnaJs further suggested that DnaJs may be involved in numerous biological processes in L. indica. Transcriptome and qPCR analyses of salt stressed leaves identified at least ten LiDnaJs that responded to salt stress. In summary, we have elucidated the expansion mechanism of the LiDnaJs, which is attributed to a recent whole-genome triplication. This research laid the foundation for functional analysis of LiDnaJs and provides gene resources for breeding salt-tolerant varieties of L. indica.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信